Learning to reconstruct botanical trees from single images

树(集合论) 计算机科学 跳跃式监视 支化(高分子化学) 人工智能 管道(软件) 树形结构 模式识别(心理学) 算法 数学 二叉树 组合数学 复合材料 材料科学 程序设计语言
作者
Bosheng Li,Jacek Kałużny,Jonathan Klein,Dominik L. Michels,Wojtek Pałubicki,Bedřich Beneš,Sören Pirk
出处
期刊:ACM Transactions on Graphics [Association for Computing Machinery]
卷期号:40 (6): 1-15 被引量:41
标识
DOI:10.1145/3478513.3480525
摘要

We introduce a novel method for reconstructing the 3D geometry of botanical trees from single photographs. Faithfully reconstructing a tree from single-view sensor data is a challenging and open problem because many possible 3D trees exist that fit the tree's shape observed from a single view. We address this challenge by defining a reconstruction pipeline based on three neural networks. The networks simultaneously mask out trees in input photographs, identify a tree's species, and obtain its 3D radial bounding volume - our novel 3D representation for botanical trees. Radial bounding volumes (RBV) are used to orchestrate a procedural model primed on learned parameters to grow a tree that matches the main branching structure and the overall shape of the captured tree. While the RBV allows us to faithfully reconstruct the main branching structure, we use the procedural model's morphological constraints to generate realistic branching for the tree crown. This constraints the number of solutions of tree models for a given photograph of a tree. We show that our method reconstructs various tree species even when the trees are captured in front of complex backgrounds. Moreover, although our neural networks have been trained on synthetic data with data augmentation, we show that our pipeline performs well for real tree photographs. We evaluate the reconstructed geometries with several metrics, including leaf area index and maximum radial tree distances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小锂故发布了新的文献求助10
刚刚
成就的鹤完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
一碗橘子冻应助gyeol采纳,获得10
刚刚
wzm关闭了wzm文献求助
刚刚
1秒前
福star高照给福star高照的求助进行了留言
1秒前
学术裁缝完成签到,获得积分10
1秒前
orange完成签到,获得积分10
1秒前
科目三应助舒心的访冬采纳,获得10
1秒前
1秒前
光环发布了新的文献求助10
1秒前
干净的夏天完成签到,获得积分10
1秒前
2秒前
2秒前
科研鸭发布了新的文献求助10
2秒前
还单身的笑翠完成签到 ,获得积分10
2秒前
SHAO应助坦率的匪采纳,获得10
2秒前
2秒前
虚幻中蓝发布了新的文献求助10
3秒前
大梦一场发布了新的文献求助10
3秒前
vagary完成签到,获得积分10
3秒前
3秒前
lt发布了新的文献求助10
5秒前
5秒前
GuangChe应助duaila采纳,获得10
5秒前
6秒前
彭于晏应助tom采纳,获得10
6秒前
小不遛w发布了新的文献求助10
6秒前
7秒前
7秒前
kevin完成签到,获得积分10
7秒前
李健应助小锂故采纳,获得10
7秒前
坐下喝茶发布了新的文献求助10
8秒前
小阿博完成签到,获得积分10
8秒前
曼粒子发布了新的文献求助10
8秒前
slf完成签到,获得积分10
9秒前
9秒前
小樊完成签到,获得积分10
10秒前
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954947
求助须知:如何正确求助?哪些是违规求助? 3501168
关于积分的说明 11102048
捐赠科研通 3231509
什么是DOI,文献DOI怎么找? 1786448
邀请新用户注册赠送积分活动 870058
科研通“疑难数据库(出版商)”最低求助积分说明 801798