Learning to reconstruct botanical trees from single images

树(集合论) 计算机科学 跳跃式监视 支化(高分子化学) 人工智能 管道(软件) 树形结构 模式识别(心理学) 算法 数学 二叉树 组合数学 复合材料 材料科学 程序设计语言
作者
Bosheng Li,Jacek Kałużny,Jonathan Klein,Dominik L. Michels,Wojtek Pałubicki,Bedřich Beneš,Sören Pirk
出处
期刊:ACM Transactions on Graphics [Association for Computing Machinery]
卷期号:40 (6): 1-15 被引量:41
标识
DOI:10.1145/3478513.3480525
摘要

We introduce a novel method for reconstructing the 3D geometry of botanical trees from single photographs. Faithfully reconstructing a tree from single-view sensor data is a challenging and open problem because many possible 3D trees exist that fit the tree's shape observed from a single view. We address this challenge by defining a reconstruction pipeline based on three neural networks. The networks simultaneously mask out trees in input photographs, identify a tree's species, and obtain its 3D radial bounding volume - our novel 3D representation for botanical trees. Radial bounding volumes (RBV) are used to orchestrate a procedural model primed on learned parameters to grow a tree that matches the main branching structure and the overall shape of the captured tree. While the RBV allows us to faithfully reconstruct the main branching structure, we use the procedural model's morphological constraints to generate realistic branching for the tree crown. This constraints the number of solutions of tree models for a given photograph of a tree. We show that our method reconstructs various tree species even when the trees are captured in front of complex backgrounds. Moreover, although our neural networks have been trained on synthetic data with data augmentation, we show that our pipeline performs well for real tree photographs. We evaluate the reconstructed geometries with several metrics, including leaf area index and maximum radial tree distances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研圣体发布了新的文献求助30
1秒前
2秒前
我是老大应助小徐采纳,获得10
2秒前
神勇的萝发布了新的文献求助30
2秒前
caiji发布了新的文献求助10
3秒前
3秒前
4秒前
ccy应助大圣采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
sutychen发布了新的文献求助10
5秒前
liang应助星星采纳,获得10
5秒前
SAN完成签到,获得积分10
6秒前
7秒前
甜美念珍发布了新的文献求助10
8秒前
8秒前
8秒前
阿龍完成签到 ,获得积分10
9秒前
尛瞐慶成发布了新的文献求助10
10秒前
SISU完成签到,获得积分10
10秒前
善学以致用应助迅速友容采纳,获得10
11秒前
11秒前
12秒前
小杨发布了新的文献求助10
12秒前
倪妮完成签到,获得积分10
12秒前
研友_8KX15L发布了新的文献求助30
13秒前
14秒前
14秒前
15秒前
16秒前
充电宝应助JJ采纳,获得10
17秒前
英俊若灵发布了新的文献求助10
17秒前
可耐的无施完成签到,获得积分10
17秒前
高分求助中
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218137
求助须知:如何正确求助?哪些是违规求助? 2867441
关于积分的说明 8156317
捐赠科研通 2534330
什么是DOI,文献DOI怎么找? 1366911
科研通“疑难数据库(出版商)”最低求助积分说明 644892
邀请新用户注册赠送积分活动 617922