印度香菇
草甘膦
生物
人口
抗药性
农学
突变
遗传学
杂草
植物
基因
杀虫剂
医学
环境卫生
作者
Zhang Chun,Chao Yu,Qin Yu,Wen Lei Guo,Tai Jie Zhang,Xing Shan Tian
摘要
Glyphosate has been used for weed control in South China in various situations for four decades, and most Eleusine indica populations are suspected to have evolved resistance to glyphosate. This research investigated underling target-site glyphosate resistance mechanisms in six field-collected, putative glyphosate-resistant (R) E. indica populations.The six R E. indica populations were confirmed to be low (1.8 to 2.6-fold) to moderately (5.6- to 8.4-fold) resistant to glyphosate relative to the susceptible (S) population. Sixty-seven glyphosate-surviving plants from the six R populations were used to examine target-site resistance mechanisms. Target-site 5-enolpyruvylshikimate3-phosphate synthase (EPSPS) overexpression (OE) (plus further induction by glyphosate treatment) and gene copy number variation (CNV) occurred in 94% R plants, and among them, 16% had the P106A mutation and 49% had the heterozygous double TIPS (T102I + P106S) mutation (plus P381L). In addition, a low number of R plants (6%) only had the homologous TIPS (plus P381L) mutation. The (CT)6 insertion mutation in the EPSPS 5†-UTR always associates with EPSPS OE and CNV. Progeny plants possessing EPSPS OE/CNV (and P106A) displayed low level (up to 4.5-fold) glyphosate resistance. In contrast, plants homozygous for the TIPS mutation displayed higher (25-fold) resistance to glyphosate and followed by plants heterozygous for this mutation plus EPSPS OE/CNV (12-fold).Target-site glyphosate resistance in E. indica populations from South China is common with prevalence of EPSPS OE/induction/CNV conferring low level resistance. Individual plants acquiring both the TIPS mutation and EPSPS OE/CNV are favored due to evolutionary advantages. The role of (CT)6 insertion mutation in EPSPS CNV is worth further investigation. © 2021 Society of Chemical Industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI