Waste Eggshell with naturally-functionalized sulfonic groups as excellent support for loading Pd and Ag nanoparticles towards enhanced 1,3-butadiene hydrogenation

纳米颗粒 材料科学 磺酸 纳米复合材料 银纳米粒子 核化学
作者
Hanlin Huang,Jiajun Dai,Xiaobin Liu,Kok Bing Tan,Jiale Huang,Guowu Zhan,Qingbiao Li
出处
期刊:Molecular Catalysis [Elsevier BV]
卷期号:510: 111689- 被引量:1
标识
DOI:10.1016/j.mcat.2021.111689
摘要

Abstract In recent years, high value utilization of waste biomass has been a hot topic in scientific research. Herein, waste eggshell (ES) rich in sulfonic groups was utilized as a natural modified support to load Pd and Ag nanoparticles (NPs), leading to efficient Pd-Ag/ES catalysts for the catalytic hydrogenation of 1,3-butadiene. Through series of characterizations such as SEM, TEM, BET, XPS, and FTIR, it was found that the porous ES not only has hierarchical structures to facilitate the metal dispersion, but also interacts strongly with Pd and Ag NPs via the inherent surface sulfonic groups, which are responsible for the enhanced catalytic performance. The optimized Pd-Ag/ES catalyst exhibited butenes selectivity of 95.8% and 1,3-butadiene conversion of 95% at 45 °C with excellent stability for at least 30 h on-stream. Furthermore, the first-principles density functional theory (DFT) calculation and in situ DRIFTS were performed to explore the plausible mechanism underlying the enhanced catalytic performance due to sulfonic groups. It is suggested that the sulfonic groups can effectively reduce the adsorption energy of butenes and 1,3-butadiene on the surface of Pd NPs which are beneficial to the selectivity of butenes. This work exemplifies that the waste ES with inherent sulfonic groups can be used as excellent support materials for loading active metal nanoparticles for selective hydrogenation reactions. Collectively, we verified that biological waste like eggshell has a great potential in serving as catalyst carrier due to its unique advantages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形曼青应助qq采纳,获得10
1秒前
情怀应助疯狂的小肥哥采纳,获得10
1秒前
Zever发布了新的文献求助10
1秒前
赘婿应助仵一采纳,获得10
3秒前
烟花应助Mol采纳,获得10
6秒前
7秒前
7秒前
冠军黑酱油完成签到,获得积分10
7秒前
8秒前
清脆的从灵完成签到 ,获得积分10
9秒前
徐欣然完成签到 ,获得积分10
10秒前
研友_VZG7GZ应助浪里白条采纳,获得10
11秒前
仵一完成签到,获得积分10
13秒前
13秒前
13秒前
英俊的铭应助一般人采纳,获得10
16秒前
mmmm完成签到 ,获得积分10
16秒前
17秒前
周昊发布了新的文献求助10
17秒前
初闻完成签到,获得积分10
20秒前
21秒前
23秒前
23秒前
25秒前
浪里白条发布了新的文献求助10
29秒前
QQ发布了新的文献求助10
29秒前
artgravia完成签到 ,获得积分10
30秒前
小程同学发布了新的文献求助10
30秒前
31秒前
隐形曼青应助超帅士晋采纳,获得10
36秒前
leaves完成签到,获得积分10
37秒前
深海鳕鱼子完成签到,获得积分10
37秒前
浪费完成签到 ,获得积分10
38秒前
38秒前
NexusExplorer应助hibeauty采纳,获得30
38秒前
病毒遗传学完成签到,获得积分10
39秒前
大模型应助姚小包子采纳,获得10
39秒前
Guo1020181完成签到 ,获得积分10
40秒前
40秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732388
求助须知:如何正确求助?哪些是违规求助? 3276694
关于积分的说明 9998043
捐赠科研通 2992255
什么是DOI,文献DOI怎么找? 1642071
邀请新用户注册赠送积分活动 780173
科研通“疑难数据库(出版商)”最低求助积分说明 748713