亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lightweight deep neural networks for cholelithiasis and cholecystitis detection by point-of-care ultrasound

急性胆囊炎 胆囊炎 人工智能 计算机科学 人工神经网络 超声波 医学 点(几何) 护理点超声 胆囊 放射科 胆囊切除术 普通外科 外科 数学 几何学
作者
Chih-Jui Yu,Hsing‐Jung Yeh,Chun‐Chao Chang,Jui‐Hsiang Tang,Wei‐Yu Kao,Wenchao Chen,Yi-Jin Huang,Chien‐Hung Li,Wei-Hao Chang,Yun-Ting Lin,Herdiantri Sufriyana,Emily Chia‐Yu Su
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:211: 106382-106382 被引量:15
标识
DOI:10.1016/j.cmpb.2021.106382
摘要

Emergency physicians (EPs) frequently deal with abdominal pain, including that is caused by either gallstones or acute cholecystitis. Easy access and low cost justify point-of-care ultrasound (POCUS) use as a first-line test to detect these diseases; yet, the detection performance of POCUS by EPs is unreliable, causing misdiagnoses with serious impacts. This study aimed to develop a machine learning system to detect and localize gallstones and to detect acute cholecystitis by ultrasound (US) still images taken by physicians or technicians for preliminary diagnoses.Abdominal US images (> 89,000) were collected from 2386 patients in a hospital database. We constructed training sets for gallstones with or without cholecystitis (N = 10,971) and cholecystitis with or without gallstones (N = 7348) as positives. Validation sets were also constructed for gallstones (N = 2664) and cholecystitis (N = 1919). We applied a single-shot multibox detector (SSD) and a feature pyramid network (FPN) to classify and localize objects using image features extracted by ResNet-50 for gallstones, and MobileNet V2 to classify cholecystitis. The deep learning models were pretrained using the COCO-2017 and ILSVRC-2012 datasets.Using the validation sets, the SSD-FPN-ResNet-50 and MobileNet V2 achieved areas under the receiver operating characteristics curve of 0.92 and 0.94, respectively. The inference speeds were 21 (47.6 frames per second, fps) and 7 ms (142.9 fps).A machine learning system was developed to detect and localize gallstones, and to detect cholecystitis, with acceptable discrimination and speed. This is the first study to develop this system for either gallstone or cholecystitis detection with absence or presence of each one. After clinical trials, this system may be used to assist EPs, including those in remote areas, for detecting these diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xh发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
9秒前
科研通AI2S应助xh采纳,获得10
20秒前
量子星尘发布了新的文献求助10
22秒前
开心丸子头完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
34秒前
所所应助Nat采纳,获得10
52秒前
量子星尘发布了新的文献求助10
53秒前
57秒前
damie发布了新的文献求助30
1分钟前
1分钟前
Nat完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Nat发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研任完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Swear完成签到 ,获得积分10
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
彭于晏应助Lorain采纳,获得10
1分钟前
chenyiiiii完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
xxxy发布了新的文献求助30
1分钟前
忐忑的绿凝完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
科研任发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
杰杰小杰发布了新的文献求助10
2分钟前
夹心吉吉完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助50
2分钟前
打打应助搜嘎采纳,获得30
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660939
求助须知:如何正确求助?哪些是违规求助? 3222150
关于积分的说明 9743768
捐赠科研通 2931683
什么是DOI,文献DOI怎么找? 1605182
邀请新用户注册赠送积分活动 757705
科研通“疑难数据库(出版商)”最低求助积分说明 734465