A review on deep learning in machining and tool monitoring: methods, opportunities, and challenges

机械加工 刀具磨损 人工神经网络 工程类 制造工程 过程(计算) 机器学习 刀具 工业4.0
作者
Vahid Nasir,Farrokh Sassani
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Nature]
卷期号:115 (9): 2683-2709 被引量:17
标识
DOI:10.1007/s00170-021-07325-7
摘要

Data-driven methods provided smart manufacturing with unprecedented opportunities to facilitate the transition toward Industry 4.0–based production. Machine learning and deep learning play a critical role in developing intelligent systems for descriptive, diagnostic, and predictive analytics for machine tools and process health monitoring. This paper reviews the opportunities and challenges of deep learning (DL) for intelligent machining and tool monitoring. The components of an intelligent monitoring framework are introduced. The main advantages and disadvantages of machine learning (ML) models are presented and compared with those of deep models. The main DL models, including autoencoders, deep belief networks, convolutional neural networks (CNNs), and recurrent neural networks (RNNs), were discussed, and their applications in intelligent machining and tool condition monitoring were reviewed. The opportunities of data-driven smart manufacturing approach applied to intelligent machining were discussed to be (1) automated feature engineering, (2) handling big data, (3) handling high-dimensional data, (4) avoiding sensor redundancy, (5) optimal sensor fusion, and (6) offering hybrid intelligent models. Finally, the data-driven challenges in smart manufacturing, including the challenges associated with the data size, data nature, model selection, and process uncertainty, were discussed, and the research gaps were outlined.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俭朴奄完成签到,获得积分10
2秒前
dycdz完成签到,获得积分10
3秒前
6秒前
迷人的小土豆完成签到,获得积分10
8秒前
砖石完成签到,获得积分20
10秒前
11秒前
格格星完成签到,获得积分10
11秒前
Owen应助spirit采纳,获得10
11秒前
呆呆是一条鱼完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
搜集达人应助俭朴奄采纳,获得10
15秒前
hhan发布了新的文献求助10
15秒前
taotao发布了新的文献求助10
16秒前
耶耶耶完成签到 ,获得积分10
18秒前
18秒前
时尚初柳完成签到,获得积分10
18秒前
666发布了新的文献求助10
20秒前
草哥完成签到,获得积分10
20秒前
21秒前
大个应助眯眯眼的谷兰采纳,获得10
22秒前
DXY发布了新的文献求助10
22秒前
Xx完成签到,获得积分10
23秒前
hhan完成签到,获得积分10
26秒前
27秒前
29秒前
yzhilson完成签到 ,获得积分10
29秒前
pny发布了新的文献求助10
30秒前
薛洁洁的小糖完成签到,获得积分10
31秒前
星辰大海应助王大禹采纳,获得20
33秒前
小白科研完成签到,获得积分10
34秒前
34秒前
砖石关注了科研通微信公众号
34秒前
pny发布了新的文献求助10
37秒前
科研通AI5应助Vigour采纳,获得30
37秒前
EtAior完成签到,获得积分10
38秒前
都会完成签到 ,获得积分10
40秒前
41秒前
乐观小蕊完成签到 ,获得积分10
42秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3557621
求助须知:如何正确求助?哪些是违规求助? 3132674
关于积分的说明 9398679
捐赠科研通 2832882
什么是DOI,文献DOI怎么找? 1557088
邀请新用户注册赠送积分活动 727082
科研通“疑难数据库(出版商)”最低求助积分说明 716184