已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Mobile Demand Forecasting via Deep Graph-Sequence Spatiotemporal Modeling in Cellular Networks

计算机科学 需求预测 粒度 图形 卷积神经网络 深度学习 时间序列 人工智能 数据挖掘 机器学习 理论计算机科学 运筹学 数学 操作系统
作者
Luoyang Fang,Xiang Cheng,Haonan Wang,Liuqing Yang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:5 (4): 3091-3101 被引量:64
标识
DOI:10.1109/jiot.2018.2832071
摘要

The demand forecasting plays a crucial role in the predictive physical and virtualized network management in cellular networks, which can effectively reduce both the capital and operational expenditures by fully exploiting the network infrastructure. In this paper, we study the per-cell demand forecasting in cellular networks. The success of demand forecasting relies on the effective modeling of both the spatial and temporal aspects of the per-cell demand time series. However, the main challenge of the spatial relevancy modeling in the per-cell demand forecasting is the irregular spatial distribution of cells in a network, where applying grid-based models (e.g., convolutional neural networks) would lead to degradation of spatial granularity. In this paper, we propose to model the spatial relevancy among cells by a dependency graph based on spatial distances among cells without the loss of spatial granularity. Such spatial distance-based graph modeling is confirmed by the spatiotemporal analysis via semivariogram, which suggests that the relevancy between any two cells declines as their spatial distance increases. Hence, the graph convolutional networks and long short-term memory (LSTM) from deep learning are employed to model the spatial and temporal aspects, respectively. In addition, the deep graph-sequence model, graph convolutional LSTM, is further employed to simultaneously characterize both the spatial and temporal aspects of mobile demand forecasting. Experiments demonstrate that our proposed graph-sequence demand forecasting model could achieve a superior forecasting performance compared with the other two proposed models as well as the traditional auto regression integrated moving average time series model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
今后应助Vincy采纳,获得10
2秒前
3秒前
脑洞疼应助cruise采纳,获得10
4秒前
5秒前
李达康完成签到,获得积分10
7秒前
SPRETEND发布了新的文献求助10
7秒前
无花果应助半烟采纳,获得10
8秒前
9秒前
苗条的酸奶完成签到,获得积分10
10秒前
10秒前
CSUST科研一哥应助jnwong采纳,获得20
12秒前
Bethune124完成签到 ,获得积分10
13秒前
14秒前
14秒前
15秒前
15秒前
Louki完成签到,获得积分20
17秒前
kk发布了新的文献求助10
17秒前
17秒前
lkm发布了新的文献求助20
17秒前
18秒前
18秒前
老詹头完成签到,获得积分10
19秒前
英俊的铭应助妥妥酱采纳,获得10
19秒前
cruise发布了新的文献求助10
20秒前
风清扬发布了新的文献求助10
21秒前
Louki发布了新的文献求助10
21秒前
Singularity发布了新的文献求助10
21秒前
77发布了新的文献求助10
23秒前
李达康发布了新的文献求助10
23秒前
23秒前
花花发布了新的文献求助30
26秒前
无语死了发布了新的文献求助10
27秒前
傲慢与偏见zz应助ardejiang采纳,获得10
27秒前
洋溢发布了新的文献求助30
27秒前
cruise完成签到,获得积分10
27秒前
伏月八发布了新的文献求助10
27秒前
思源应助yayayang采纳,获得10
28秒前
29秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234275
求助须知:如何正确求助?哪些是违规求助? 2880628
关于积分的说明 8216394
捐赠科研通 2548249
什么是DOI,文献DOI怎么找? 1377627
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302