Differential Adaptive Stress Testing of Airborne Collision Avoidance Systems

避碰 计算机科学 防撞系统 压力测试(软件) 碰撞 差速器(机械装置) 事件(粒子物理) 过程(计算) 压力(语言学) 模拟 可靠性工程 工程类 计算机安全 操作系统 物理 量子力学 哲学 航空航天工程 程序设计语言 语言学
作者
Ritchie Lee,Ole J. Mengshoel,Anshu Saksena,Ryan W. Gardner,Daniel Genin,Jeffrey S. Brush,Mykel J. Kochenderfer
标识
DOI:10.2514/6.2018-1923
摘要

The next-generation Airborne Collision Avoidance System (ACAS X) is currently being developed and tested to replace the Traffic Alert and Collision Avoidance System (TCAS) as the next international standard for collision avoidance. To validate the safety of the system, stress testing in simulation is one of several approaches for analyzing near mid-air collisions (NMACs). Understanding how NMACs can occur is important for characterizing risk and informingdevelopment of the system. Recently, adaptive stress testing (AST) has been proposed as a way to find the most likely path to a failure event. The simulation-based approach accelerates search by formulating stress testing as a sequential decision process then optimizing it using reinforcement learning. The approach has been successfully applied to stress test a prototype of ACAS Xin various simulated aircraft encounters. In some applications, we are not as interestedin the system's absolute performance as its performance relative to another system. Such situations arise, for example, during regression testing or when deciding whether a new system should replace an existing system. In our collision avoidance application, we are interested in finding cases where ACAS X fails but TCAS succeeds in resolving a conflict. Existing approaches do not provide an efficient means to perform this type of analysis. This paper extends the AST approach to differential analysis by searching two simulators simultaneously and maximizing the difference between their outcomes. We call this approach differential adaptive stress testing (DAST). We apply DAST to compare a prototype of ACAS X against TCAS and show examples of encounters found by the algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
双色辉光完成签到,获得积分10
刚刚
1秒前
苏小寰发布了新的文献求助10
1秒前
1秒前
2秒前
今后应助沙猛采纳,获得10
2秒前
zsp发布了新的文献求助10
2秒前
2秒前
2秒前
mickiller发布了新的文献求助10
3秒前
shuang完成签到,获得积分10
3秒前
思源应助霖霖采纳,获得10
4秒前
yu完成签到,获得积分10
4秒前
羽言发布了新的文献求助10
4秒前
科研通AI2S应助现代的烤鸡采纳,获得10
4秒前
lambda发布了新的文献求助30
4秒前
5秒前
FashionBoy应助xqwwqx采纳,获得10
5秒前
暴躁的夏烟应助meng采纳,获得10
5秒前
linaixi发布了新的文献求助20
5秒前
归尘发布了新的文献求助10
5秒前
fly发布了新的文献求助10
6秒前
6秒前
田様应助柯口柯乐采纳,获得50
6秒前
6秒前
钟博士发布了新的文献求助10
6秒前
7秒前
mickiller完成签到,获得积分10
7秒前
7秒前
Hello应助michaelzy1127采纳,获得10
7秒前
8秒前
8秒前
8秒前
科目三应助yanyimeng采纳,获得10
9秒前
李健的小迷弟应助wjq采纳,获得10
9秒前
9秒前
may发布了新的文献求助10
9秒前
大帅的威严完成签到,获得积分10
9秒前
克劳德发布了新的文献求助10
10秒前
小桔子发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3558083
求助须知:如何正确求助?哪些是违规求助? 3133203
关于积分的说明 9401074
捐赠科研通 2833299
什么是DOI,文献DOI怎么找? 1557421
邀请新用户注册赠送积分活动 727253
科研通“疑难数据库(出版商)”最低求助积分说明 716257