Self-Gating: An Adaptive Center-of-Mass Approach for Respiratory Gating in PET

信号(编程语言) 计算机科学 门控 人工智能 信号平均 计算机视觉 正电子发射断层摄影术 模式识别(心理学) 核医学 模拟信号 信号传递函数 医学 数字信号处理 计算机硬件 生理学 程序设计语言
作者
Tao Feng,Jizhe Wang,Youjun Sun,Wentao Zhu,Yun Dong,Hongdi Li
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:37 (5): 1140-1148 被引量:30
标识
DOI:10.1109/tmi.2017.2783739
摘要

The goal is to develop an adaptive center-of-mass (COM)-based approach for device-less respiratory gating of list-mode positron emission tomography (PET) data. Our method contains two steps. The first is to automatically extract an optimized respiratory motion signal from the list-mode data during acquisition. The respiratory motion signal was calculated by tracking the location of COM within a volume of interest (VOI). The signal prominence (SP) was calculated based on Fourier analysis of the signal. The VOI was adaptively optimized to maximize SP. The second step is to automatically correct signal-flipping effects. The sign of the signal was determined based on the assumption that the average patient spends more time during expiration than inspiration. To validate our methods, thirty-one 18 F-FDG patient scans were included in this paper. An external device-based signal was used as the gold standard, and the correlation coefficient of the data-driven signal with the device-based signal was measured. Our method successfully extracted respiratory signal from 30 out of 31 datasets. The failure case was due to lack of uptake in the field of view. Moreover, our sign determination method obtained correct results for all scans excluding the failure case. Quantitatively, the proposed signal extraction approach achieved a median correlation of 0.85 with the device-based signal. Gated images using optimized data-driven signal showed improved lesion contrast over static image and were comparable to those using device-based signal. We presented a new data-driven method to automatically extract respiratory motion signal from list-mode PET data by optimizing VOI for COM calculation, as well as determine motion direction from signal asymmetry. Successful application of the proposed method on most clinical datasets and comparison with device-based signal suggests its potential of serving as an alternative to external respiratory monitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋的小笼包完成签到,获得积分10
刚刚
静谧180发布了新的文献求助30
刚刚
1秒前
天天快乐应助闪闪静蕾采纳,获得10
1秒前
1秒前
美少女战士丫完成签到,获得积分10
2秒前
小帆帆完成签到,获得积分10
2秒前
3秒前
橘子圭令完成签到,获得积分10
3秒前
小杭76应助顺心的尔白采纳,获得10
4秒前
11tty发布了新的文献求助10
5秒前
浮游应助棠棠采纳,获得10
5秒前
mzm发布了新的文献求助10
5秒前
5秒前
6秒前
搬砖完成签到,获得积分10
6秒前
7秒前
曾经的孤萍完成签到,获得积分10
7秒前
笨笨伟泽发布了新的文献求助30
7秒前
诚心中恶发布了新的文献求助10
8秒前
8秒前
星河完成签到,获得积分10
8秒前
榴榴发布了新的文献求助10
8秒前
cencen发布了新的文献求助10
9秒前
9秒前
Akim应助yuki22采纳,获得10
9秒前
阿衍完成签到,获得积分10
9秒前
9秒前
悦子发布了新的文献求助40
9秒前
言亦云应助轻狂书生采纳,获得10
10秒前
10秒前
shaiiwe发布了新的文献求助30
10秒前
Joey发布了新的文献求助10
11秒前
11秒前
阿飞发布了新的文献求助10
12秒前
乐乐应助小溜溜采纳,获得30
12秒前
然463完成签到 ,获得积分10
12秒前
mzm完成签到,获得积分10
13秒前
哈哈镜阿姐完成签到,获得积分20
13秒前
14秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5205765
求助须知:如何正确求助?哪些是违规求助? 4384514
关于积分的说明 13653097
捐赠科研通 4242633
什么是DOI,文献DOI怎么找? 2327576
邀请新用户注册赠送积分活动 1325326
关于科研通互助平台的介绍 1277448