Self-Gating: An Adaptive Center-of-Mass Approach for Respiratory Gating in PET

信号(编程语言) 计算机科学 门控 人工智能 信号平均 计算机视觉 正电子发射断层摄影术 模式识别(心理学) 核医学 模拟信号 信号传递函数 医学 数字信号处理 计算机硬件 生理学 程序设计语言
作者
Tao Feng,Jizhe Wang,Youjun Sun,Wentao Zhu,Yun Dong,Hongdi Li
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:37 (5): 1140-1148 被引量:30
标识
DOI:10.1109/tmi.2017.2783739
摘要

The goal is to develop an adaptive center-of-mass (COM)-based approach for device-less respiratory gating of list-mode positron emission tomography (PET) data. Our method contains two steps. The first is to automatically extract an optimized respiratory motion signal from the list-mode data during acquisition. The respiratory motion signal was calculated by tracking the location of COM within a volume of interest (VOI). The signal prominence (SP) was calculated based on Fourier analysis of the signal. The VOI was adaptively optimized to maximize SP. The second step is to automatically correct signal-flipping effects. The sign of the signal was determined based on the assumption that the average patient spends more time during expiration than inspiration. To validate our methods, thirty-one 18 F-FDG patient scans were included in this paper. An external device-based signal was used as the gold standard, and the correlation coefficient of the data-driven signal with the device-based signal was measured. Our method successfully extracted respiratory signal from 30 out of 31 datasets. The failure case was due to lack of uptake in the field of view. Moreover, our sign determination method obtained correct results for all scans excluding the failure case. Quantitatively, the proposed signal extraction approach achieved a median correlation of 0.85 with the device-based signal. Gated images using optimized data-driven signal showed improved lesion contrast over static image and were comparable to those using device-based signal. We presented a new data-driven method to automatically extract respiratory motion signal from list-mode PET data by optimizing VOI for COM calculation, as well as determine motion direction from signal asymmetry. Successful application of the proposed method on most clinical datasets and comparison with device-based signal suggests its potential of serving as an alternative to external respiratory monitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
esbd完成签到,获得积分10
刚刚
Capacition6完成签到,获得积分10
1秒前
打打应助傲娇的芝麻采纳,获得10
9秒前
握瑾怀瑜完成签到 ,获得积分0
15秒前
狮子卷卷完成签到,获得积分10
15秒前
俏皮的安萱完成签到 ,获得积分10
19秒前
等待香寒完成签到 ,获得积分10
21秒前
轩辕无忧完成签到,获得积分10
22秒前
Alexbirchurros完成签到 ,获得积分10
26秒前
lxdfrank完成签到,获得积分10
27秒前
BaekHyun完成签到 ,获得积分10
28秒前
水瓶鱼完成签到,获得积分10
31秒前
一只小鲨鱼完成签到,获得积分10
32秒前
刘晓楠完成签到 ,获得积分10
32秒前
张医生完成签到,获得积分10
34秒前
qiqi完成签到,获得积分10
35秒前
catch完成签到,获得积分10
35秒前
受伤的妙之完成签到 ,获得积分10
36秒前
小静完成签到 ,获得积分10
39秒前
小闵完成签到,获得积分10
39秒前
Skyrin完成签到,获得积分10
39秒前
科研通AI2S应助Tonald Yang采纳,获得10
40秒前
楚之杰者完成签到,获得积分10
42秒前
健壮的芷容完成签到,获得积分10
44秒前
酪酪Alona完成签到,获得积分10
44秒前
sugar完成签到,获得积分10
47秒前
哭泣青烟完成签到 ,获得积分10
53秒前
御风完成签到,获得积分10
58秒前
少年旭完成签到,获得积分10
59秒前
wo_qq111完成签到 ,获得积分10
59秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
哎嘿应助科研通管家采纳,获得10
1分钟前
1分钟前
哎嘿应助科研通管家采纳,获得10
1分钟前
Singularity应助科研通管家采纳,获得10
1分钟前
哎嘿应助科研通管家采纳,获得10
1分钟前
哎嘿应助科研通管家采纳,获得10
1分钟前
隐形白开水完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162430
求助须知:如何正确求助?哪些是违规求助? 2813350
关于积分的说明 7900043
捐赠科研通 2472900
什么是DOI,文献DOI怎么找? 1316594
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602155