Self-Gating: An Adaptive Center-of-Mass Approach for Respiratory Gating in PET

信号(编程语言) 计算机科学 门控 人工智能 信号平均 计算机视觉 正电子发射断层摄影术 模式识别(心理学) 核医学 模拟信号 信号传递函数 医学 数字信号处理 计算机硬件 生理学 程序设计语言
作者
Tao Feng,Jizhe Wang,Youjun Sun,Wentao Zhu,Yun Dong,Hongdi Li
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:37 (5): 1140-1148 被引量:30
标识
DOI:10.1109/tmi.2017.2783739
摘要

The goal is to develop an adaptive center-of-mass (COM)-based approach for device-less respiratory gating of list-mode positron emission tomography (PET) data. Our method contains two steps. The first is to automatically extract an optimized respiratory motion signal from the list-mode data during acquisition. The respiratory motion signal was calculated by tracking the location of COM within a volume of interest (VOI). The signal prominence (SP) was calculated based on Fourier analysis of the signal. The VOI was adaptively optimized to maximize SP. The second step is to automatically correct signal-flipping effects. The sign of the signal was determined based on the assumption that the average patient spends more time during expiration than inspiration. To validate our methods, thirty-one 18 F-FDG patient scans were included in this paper. An external device-based signal was used as the gold standard, and the correlation coefficient of the data-driven signal with the device-based signal was measured. Our method successfully extracted respiratory signal from 30 out of 31 datasets. The failure case was due to lack of uptake in the field of view. Moreover, our sign determination method obtained correct results for all scans excluding the failure case. Quantitatively, the proposed signal extraction approach achieved a median correlation of 0.85 with the device-based signal. Gated images using optimized data-driven signal showed improved lesion contrast over static image and were comparable to those using device-based signal. We presented a new data-driven method to automatically extract respiratory motion signal from list-mode PET data by optimizing VOI for COM calculation, as well as determine motion direction from signal asymmetry. Successful application of the proposed method on most clinical datasets and comparison with device-based signal suggests its potential of serving as an alternative to external respiratory monitors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助丁莞采纳,获得10
刚刚
阔达凝天发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
rationality完成签到,获得积分10
2秒前
天天快乐应助靓丽初蓝采纳,获得10
3秒前
清秀尔竹完成签到 ,获得积分10
3秒前
billkin完成签到,获得积分10
3秒前
4秒前
大个应助辛勤面包采纳,获得10
4秒前
4秒前
星辰大海应助坚定的苑睐采纳,获得10
6秒前
DRFANG完成签到,获得积分10
6秒前
6秒前
文静的摩托完成签到,获得积分10
6秒前
7秒前
8秒前
哎哟大侠发布了新的文献求助10
8秒前
fjmelite完成签到 ,获得积分10
8秒前
彭于晏应助flypig1616采纳,获得10
9秒前
9秒前
前男友完成签到,获得积分10
10秒前
所所应助阔达凝天采纳,获得10
10秒前
纯真玉兰发布了新的文献求助10
10秒前
李玉博发布了新的文献求助10
10秒前
10秒前
10秒前
DRFANG发布了新的文献求助10
11秒前
DTS发布了新的文献求助10
12秒前
丁莞发布了新的文献求助10
12秒前
大方的自行车完成签到,获得积分20
12秒前
qq完成签到,获得积分10
12秒前
灰色的乌完成签到,获得积分10
12秒前
12秒前
13秒前
无极微光应助晚梦尚歌采纳,获得20
13秒前
木子发布了新的文献求助10
13秒前
14秒前
14秒前
科研通AI6应助月星采纳,获得30
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608203
求助须知:如何正确求助?哪些是违规求助? 4692781
关于积分的说明 14875613
捐赠科研通 4716881
什么是DOI,文献DOI怎么找? 2544093
邀请新用户注册赠送积分活动 1509086
关于科研通互助平台的介绍 1472795