Self-Gating: An Adaptive Center-of-Mass Approach for Respiratory Gating in PET

信号(编程语言) 计算机科学 门控 人工智能 信号平均 计算机视觉 正电子发射断层摄影术 模式识别(心理学) 核医学 模拟信号 信号传递函数 医学 数字信号处理 计算机硬件 生理学 程序设计语言
作者
Tao Feng,Jizhe Wang,Youjun Sun,Wentao Zhu,Yun Dong,Hongdi Li
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:37 (5): 1140-1148 被引量:30
标识
DOI:10.1109/tmi.2017.2783739
摘要

The goal is to develop an adaptive center-of-mass (COM)-based approach for device-less respiratory gating of list-mode positron emission tomography (PET) data. Our method contains two steps. The first is to automatically extract an optimized respiratory motion signal from the list-mode data during acquisition. The respiratory motion signal was calculated by tracking the location of COM within a volume of interest (VOI). The signal prominence (SP) was calculated based on Fourier analysis of the signal. The VOI was adaptively optimized to maximize SP. The second step is to automatically correct signal-flipping effects. The sign of the signal was determined based on the assumption that the average patient spends more time during expiration than inspiration. To validate our methods, thirty-one 18 F-FDG patient scans were included in this paper. An external device-based signal was used as the gold standard, and the correlation coefficient of the data-driven signal with the device-based signal was measured. Our method successfully extracted respiratory signal from 30 out of 31 datasets. The failure case was due to lack of uptake in the field of view. Moreover, our sign determination method obtained correct results for all scans excluding the failure case. Quantitatively, the proposed signal extraction approach achieved a median correlation of 0.85 with the device-based signal. Gated images using optimized data-driven signal showed improved lesion contrast over static image and were comparable to those using device-based signal. We presented a new data-driven method to automatically extract respiratory motion signal from list-mode PET data by optimizing VOI for COM calculation, as well as determine motion direction from signal asymmetry. Successful application of the proposed method on most clinical datasets and comparison with device-based signal suggests its potential of serving as an alternative to external respiratory monitors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
犹豫小翠发布了新的文献求助10
1秒前
半夏完成签到,获得积分10
1秒前
1秒前
dachuichui完成签到,获得积分10
2秒前
机灵语雪完成签到,获得积分10
2秒前
上官若男应助科研废人采纳,获得10
2秒前
柳易槐发布了新的文献求助10
3秒前
脑洞疼应助衷医课代表采纳,获得10
3秒前
taozjju完成签到,获得积分10
4秒前
4秒前
奋斗的大白菜完成签到,获得积分10
4秒前
WZH完成签到 ,获得积分10
4秒前
4秒前
啊是是是完成签到,获得积分10
4秒前
4秒前
Brad_AN完成签到,获得积分10
5秒前
开心雁凡完成签到,获得积分10
6秒前
yydsyk完成签到,获得积分10
6秒前
群山完成签到 ,获得积分10
7秒前
tfr06完成签到,获得积分10
7秒前
liufengjie发布了新的文献求助20
7秒前
灯灯完成签到,获得积分10
8秒前
xixihaha完成签到,获得积分10
8秒前
zq完成签到 ,获得积分10
8秒前
Mininine完成签到,获得积分10
9秒前
9秒前
张张发布了新的文献求助10
9秒前
盟主完成签到 ,获得积分10
10秒前
10秒前
cwm完成签到,获得积分10
10秒前
111完成签到,获得积分10
10秒前
10秒前
zhengyue2233完成签到,获得积分10
11秒前
爱科研的龙完成签到,获得积分10
11秒前
chilin完成签到,获得积分10
11秒前
ocsxj完成签到,获得积分20
11秒前
量子星尘发布了新的文献求助10
11秒前
龙猫抱枕完成签到,获得积分10
12秒前
发光的萤火虫完成签到,获得积分0
12秒前
和和和完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645248
求助须知:如何正确求助?哪些是违规求助? 4768236
关于积分的说明 15027213
捐赠科研通 4803788
什么是DOI,文献DOI怎么找? 2568456
邀请新用户注册赠送积分活动 1525787
关于科研通互助平台的介绍 1485451