Self-Gating: An Adaptive Center-of-Mass Approach for Respiratory Gating in PET

信号(编程语言) 计算机科学 门控 人工智能 信号平均 计算机视觉 正电子发射断层摄影术 模式识别(心理学) 核医学 模拟信号 信号传递函数 医学 数字信号处理 计算机硬件 生理学 程序设计语言
作者
Tao Feng,Jizhe Wang,Youjun Sun,Wentao Zhu,Yun Dong,Hongdi Li
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:37 (5): 1140-1148 被引量:30
标识
DOI:10.1109/tmi.2017.2783739
摘要

The goal is to develop an adaptive center-of-mass (COM)-based approach for device-less respiratory gating of list-mode positron emission tomography (PET) data. Our method contains two steps. The first is to automatically extract an optimized respiratory motion signal from the list-mode data during acquisition. The respiratory motion signal was calculated by tracking the location of COM within a volume of interest (VOI). The signal prominence (SP) was calculated based on Fourier analysis of the signal. The VOI was adaptively optimized to maximize SP. The second step is to automatically correct signal-flipping effects. The sign of the signal was determined based on the assumption that the average patient spends more time during expiration than inspiration. To validate our methods, thirty-one 18 F-FDG patient scans were included in this paper. An external device-based signal was used as the gold standard, and the correlation coefficient of the data-driven signal with the device-based signal was measured. Our method successfully extracted respiratory signal from 30 out of 31 datasets. The failure case was due to lack of uptake in the field of view. Moreover, our sign determination method obtained correct results for all scans excluding the failure case. Quantitatively, the proposed signal extraction approach achieved a median correlation of 0.85 with the device-based signal. Gated images using optimized data-driven signal showed improved lesion contrast over static image and were comparable to those using device-based signal. We presented a new data-driven method to automatically extract respiratory motion signal from list-mode PET data by optimizing VOI for COM calculation, as well as determine motion direction from signal asymmetry. Successful application of the proposed method on most clinical datasets and comparison with device-based signal suggests its potential of serving as an alternative to external respiratory monitors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助杭杭采纳,获得10
刚刚
2秒前
2秒前
从容的小土豆完成签到,获得积分10
4秒前
无花果应助柚子采纳,获得20
5秒前
regina完成签到,获得积分10
5秒前
5秒前
杨小鸿发布了新的文献求助10
5秒前
7秒前
我是老大应助傻傻的雅寒采纳,获得10
7秒前
森花完成签到,获得积分10
7秒前
子訡发布了新的文献求助10
8秒前
8秒前
CH完成签到,获得积分10
8秒前
李兴完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
kzf丶bryant发布了新的文献求助10
11秒前
vanilla完成签到,获得积分10
12秒前
12秒前
Chenly完成签到,获得积分10
14秒前
桐桐应助柚子采纳,获得10
15秒前
17秒前
18秒前
刘濮源发布了新的文献求助10
23秒前
Hello应助杨小鸿采纳,获得10
23秒前
想发好文章完成签到,获得积分10
24秒前
科研通AI6.1应助柚子采纳,获得10
25秒前
26秒前
28秒前
听闻韬声依旧完成签到 ,获得积分10
31秒前
刘振坤完成签到,获得积分10
32秒前
33秒前
33秒前
凶狠的半山完成签到,获得积分10
34秒前
JRG完成签到,获得积分20
34秒前
瞬间完成签到,获得积分10
35秒前
35秒前
37秒前
决明子完成签到 ,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978