第1周
Cdc25型
细胞周期蛋白依赖激酶1
激酶
细胞生物学
G2-M DNA损伤检查点
细胞周期蛋白B
有丝分裂
细胞周期蛋白依赖激酶
生物
细胞周期蛋白
细胞周期检查点
支票1
细胞周期
化学
癌症研究
癌症
遗传学
作者
Karin Schmidtkunz,Alexander Rohe,Charlott Platzer,Abdulkarim Najjar,Frank Erdmann,Wolfgang Sippl
出处
期刊:Molecules
[MDPI AG]
日期:2017-11-23
卷期号:22 (12): 2045-2045
被引量:114
标识
DOI:10.3390/molecules22122045
摘要
In the cell cycle, there are two checkpoint arrests that allow cells to repair damaged DNA in order to maintain genomic integrity. Many cancer cells have defective G1 checkpoint mechanisms, thus depending on the G2 checkpoint far more than normal cells. G2 checkpoint abrogation is therefore a promising concept to preferably damage cancerous cells over normal cells. The main factor influencing the decision to enter mitosis is a complex composed of Cdk1 and cyclin B. Cdk1/CycB is regulated by various feedback mechanisms, in particular inhibitory phosphorylations at Thr14 and Tyr15 of Cdk1. In fact, Cdk1/CycB activity is restricted by the balance between WEE family kinases and Cdc25 phosphatases. The WEE kinase family consists of three proteins: WEE1, PKMYT1, and the less important WEE1B. WEE1 exclusively mediates phosphorylation at Tyr15, whereas PKMYT1 is dual-specific for Tyr15 as well as Thr14. Inhibition by a small molecule inhibitor is therefore proposed to be a promising option since WEE kinases bind Cdk1, altering equilibria and thus affecting G2/M transition.
科研通智能强力驱动
Strongly Powered by AbleSci AI