Predicting Transportation Carbon Emission with Urban Big Data

大数据 计算机科学 环境科学 运输工程 工程类 数据挖掘
作者
Xiangyong Lu,Kaoru Ota,Mianxiong Dong,Yu Chen,Hai Jin
出处
期刊:IEEE transactions on sustainable computing [Institute of Electrical and Electronics Engineers]
卷期号:2 (4): 333-344 被引量:73
标识
DOI:10.1109/tsusc.2017.2728805
摘要

Transportation carbon emission is a significant contributor to the increase of greenhouse gases, which directly threatens the change of climate and human health. Under the pressure of the environment, it is very important to master the information of transportation carbon emission in real time. In the traditional way, we get the information of the transportation carbon emission by calculating the combustion of fossil fuel in the transportation sector. However, it is very difficult to obtain the real-time and accurate fossil fuel combustion in the transportation field. In this paper, we predict the real-time and fine-grained transportation carbon emission information in the whole city, based on the spatio-temporal datasets we observed in the city, that is taxi GPS data, transportation carbon emission data, road networks, points of interests (POIs), and meteorological data. We propose a three-layer perceptron neural network (3-layerPNN) to learn the characteristics of collected data and infer the transportation carbon emission. We evaluate our method with extensive experiments based on five real data sources obtained in Zhuhai, China. The results show that our method has advantages over the well-known three machine learning methods (Gaussian Naive Bayes, Linear Regression, and Logistic Regression) and two deep learning methods (Stacked Denoising Autoencoder and Deep Belief Networks).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
2秒前
wangfen发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
急急急完成签到,获得积分10
5秒前
wlikef发布了新的文献求助10
5秒前
范小羽发布了新的文献求助10
5秒前
6秒前
情怀应助穆柏杨采纳,获得30
6秒前
hjw发布了新的文献求助10
7秒前
7秒前
mmyhn应助大气小天鹅采纳,获得20
7秒前
8秒前
小明应助白嘉乐采纳,获得10
8秒前
蓝莓土豆发布了新的文献求助10
8秒前
研友_VZG7GZ应助会飞的蜗牛采纳,获得10
8秒前
8秒前
浮游应助zzcres采纳,获得10
9秒前
9秒前
Gnehsnuy完成签到,获得积分20
10秒前
我是老大应助moon采纳,获得10
10秒前
12秒前
13秒前
13秒前
科研通AI5应助hjw采纳,获得10
14秒前
完美花生发布了新的文献求助10
14秒前
15秒前
16秒前
Lucas应助liugm采纳,获得10
16秒前
Ava应助幸福的面包采纳,获得20
16秒前
likeqiao完成签到,获得积分20
16秒前
17秒前
17秒前
gloria发布了新的文献求助10
17秒前
老迟到的泡芙完成签到 ,获得积分10
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4868146
求助须知:如何正确求助?哪些是违规求助? 4159789
关于积分的说明 12899265
捐赠科研通 3914053
什么是DOI,文献DOI怎么找? 2149600
邀请新用户注册赠送积分活动 1168125
关于科研通互助平台的介绍 1070512