Reduction effects of three garden types on runoff, sediment and nutrient loss in the red soil hilly region of China

地表径流 沟渠 竹子 环境科学 分水岭 水文学(农业) 沉积物 营养物 农学 生态学 地质学 生物 古生物学 岩土工程 机器学习 计算机科学
作者
Haijin Zheng,Shaowen Fang,Jie Yang,Hongjiang Zhang,Bangwen Wang,Minghao Mo
摘要

To develop appropriate models for gardens in the red soil hilly region in southern China, runoff plots with four treatments were constructed. Runoff plots included a natural slope (as the control), oil-tea trees + bamboo level ditch, oil-tea trees + hedgerow and Ponkan trees + level platform + grassed wall. Plots were constructed in Zuoma, a small watershed of Jiangxi Province. Surface runoff, sediment yields and nutrient losses were investigated in response to natural rainfall from January to December, 2010. The results indicate that relative to the control, surface runoff was reduced by 26.5179.34% in the treatment plots, and sediment rates were reduced by 20.76-72.06%. These results indicated that three typical gardens greatly reduce surface runoff and sediment yield. These gardens are ranked in terms of their ability to reduce runoff in the following descending order: oil-tea trees + bamboo level ditch, Ponkan trees + level platform + grassed wall and oil-tea trees + hedgerow. Compared to the control plot, loss of nitrogen and phosphorus was reduced by 42.56-79.42% and 20.58-66.09%, respectively. The three typical gardens are able to prevent nutrient loss and are ranked in the following descending order: oil-tea trees + bamboo level ditch, Ponkan trees + level platform + grassed wall and oil-tea trees + hedgerow. Therefore, it is recommended that biological measures such as hedgerows and engineering measures such as level platforms and bamboo ditches be applied to gardens for watershed management in the red soil hilly region of southern China.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
在逃蛋挞发布了新的文献求助30
1秒前
熊玉然完成签到,获得积分10
1秒前
今后应助木棉采纳,获得10
1秒前
大个应助poke采纳,获得10
2秒前
2秒前
3秒前
天然呆的最可爱完成签到,获得积分20
3秒前
友好碧灵完成签到,获得积分10
3秒前
黎明发布了新的文献求助10
4秒前
科研狗完成签到,获得积分10
4秒前
gui发布了新的文献求助10
4秒前
敬老院N号应助xiaoqi采纳,获得30
5秒前
5秒前
5秒前
sunj完成签到,获得积分10
5秒前
文艺的芫发布了新的文献求助10
6秒前
王宁发布了新的文献求助30
6秒前
打打应助up采纳,获得10
6秒前
6秒前
7秒前
7秒前
7秒前
8秒前
8秒前
结实蜡烛发布了新的文献求助10
9秒前
louyu完成签到 ,获得积分0
9秒前
我先睡了发布了新的文献求助10
9秒前
深情的迎海完成签到,获得积分10
9秒前
希柚完成签到 ,获得积分10
9秒前
11秒前
Giroro_roro发布了新的文献求助10
11秒前
陈开心完成签到,获得积分10
12秒前
花生发布了新的文献求助10
12秒前
12秒前
不秃头发布了新的文献求助20
12秒前
瞿亭龙完成签到,获得积分10
12秒前
闪闪的梦柏完成签到,获得积分10
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620