已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Genome-wide prediction for complex traits under the presence of dominance effects in simulated populations using GBLUP and machine learning methods

遗传力 优势(遗传学) 统计 随机森林 最佳线性无偏预测 支持向量机 生物 机器学习 均方误差 人工智能 数学 计算机科学 遗传学 选择(遗传算法) 基因
作者
Anderson Antônio Carvalho Alves,Rebeka Magalhães da Costa,Tiago Bresolin,Gerardo Alves Fernandes Júnior,Rafael Espigolan,André Mauric Frossard Ribeiro,Roberto Carvalheiro,Lúcia Galvão de Albuquerque
出处
期刊:Journal of Animal Science [Oxford University Press]
卷期号:98 (6) 被引量:19
标识
DOI:10.1093/jas/skaa179
摘要

Abstract The aim of this study was to compare the predictive performance of the Genomic Best Linear Unbiased Predictor (GBLUP) and machine learning methods (Random Forest, RF; Support Vector Machine, SVM; Artificial Neural Network, ANN) in simulated populations presenting different levels of dominance effects. Simulated genome comprised 50k SNP and 300 QTL, both biallelic and randomly distributed across 29 autosomes. A total of six traits were simulated considering different values for the narrow and broad-sense heritability. In the purely additive scenario with low heritability (h2 = 0.10), the predictive ability obtained using GBLUP was slightly higher than the other methods whereas ANN provided the highest accuracies for scenarios with moderate heritability (h2 = 0.30). The accuracies of dominance deviations predictions varied from 0.180 to 0.350 in GBLUP extended for dominance effects (GBLUP-D), from 0.06 to 0.185 in RF and they were null using the ANN and SVM methods. Although RF has presented higher accuracies for total genetic effect predictions, the mean-squared error values in such a model were worse than those observed for GBLUP-D in scenarios with large additive and dominance variances. When applied to prescreen important regions, the RF approach detected QTL with high additive and/or dominance effects. Among machine learning methods, only the RF was capable to cover implicitly dominance effects without increasing the number of covariates in the model, resulting in higher accuracies for the total genetic and phenotypic values as the dominance ratio increases. Nevertheless, whether the interest is to infer directly on dominance effects, GBLUP-D could be a more suitable method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
短巷完成签到 ,获得积分10
3秒前
lk发布了新的文献求助10
4秒前
8秒前
沉静的雁菡给沉静的雁菡的求助进行了留言
23秒前
饱满的土豆完成签到,获得积分10
24秒前
n22JDb完成签到 ,获得积分20
24秒前
Bonnienuit完成签到 ,获得积分10
25秒前
28秒前
呃呃呃完成签到,获得积分20
30秒前
诚心的若南完成签到,获得积分20
31秒前
shadow完成签到 ,获得积分10
33秒前
嗯哼应助ly采纳,获得10
34秒前
yuji完成签到 ,获得积分10
34秒前
烟花应助呃呃呃采纳,获得10
36秒前
36秒前
Ywffffff完成签到 ,获得积分10
37秒前
HCLonely应助研友_LMBPXn采纳,获得10
38秒前
40秒前
41秒前
wenlong完成签到 ,获得积分10
43秒前
搜集达人应助科研通管家采纳,获得10
46秒前
Lucas应助科研通管家采纳,获得10
46秒前
asd应助科研通管家采纳,获得50
46秒前
汉堡包应助科研通管家采纳,获得10
46秒前
Akim应助科研通管家采纳,获得10
46秒前
asd应助科研通管家采纳,获得30
46秒前
京墨完成签到,获得积分10
46秒前
48秒前
木棉发布了新的文献求助10
48秒前
yuuu完成签到 ,获得积分10
48秒前
丘比特应助白华苍松采纳,获得10
48秒前
SPUwangshunfeng完成签到,获得积分10
52秒前
52秒前
可久斯基完成签到 ,获得积分10
53秒前
54秒前
zeroy完成签到,获得积分10
56秒前
呃呃呃发布了新的文献求助10
57秒前
rofsc完成签到 ,获得积分10
57秒前
xiao完成签到 ,获得积分10
58秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330336
求助须知:如何正确求助?哪些是违规求助? 2959888
关于积分的说明 8597669
捐赠科研通 2638476
什么是DOI,文献DOI怎么找? 1444389
科研通“疑难数据库(出版商)”最低求助积分说明 669096
邀请新用户注册赠送积分活动 656720