Genome-wide prediction for complex traits under the presence of dominance effects in simulated populations using GBLUP and machine learning methods

遗传力 优势(遗传学) 统计 随机森林 最佳线性无偏预测 支持向量机 生物 机器学习 均方误差 人工智能 数学 计算机科学 遗传学 选择(遗传算法) 基因
作者
Anderson Antônio Carvalho Alves,Rebeka Magalhães da Costa,Tiago Bresolin,Gerardo Alves Fernandes Júnior,Rafael Espigolan,André Mauric Frossard Ribeiro,Roberto Carvalheiro,Lúcia Galvão de Albuquerque
出处
期刊:Journal of Animal Science [Oxford University Press]
卷期号:98 (6) 被引量:19
标识
DOI:10.1093/jas/skaa179
摘要

Abstract The aim of this study was to compare the predictive performance of the Genomic Best Linear Unbiased Predictor (GBLUP) and machine learning methods (Random Forest, RF; Support Vector Machine, SVM; Artificial Neural Network, ANN) in simulated populations presenting different levels of dominance effects. Simulated genome comprised 50k SNP and 300 QTL, both biallelic and randomly distributed across 29 autosomes. A total of six traits were simulated considering different values for the narrow and broad-sense heritability. In the purely additive scenario with low heritability (h2 = 0.10), the predictive ability obtained using GBLUP was slightly higher than the other methods whereas ANN provided the highest accuracies for scenarios with moderate heritability (h2 = 0.30). The accuracies of dominance deviations predictions varied from 0.180 to 0.350 in GBLUP extended for dominance effects (GBLUP-D), from 0.06 to 0.185 in RF and they were null using the ANN and SVM methods. Although RF has presented higher accuracies for total genetic effect predictions, the mean-squared error values in such a model were worse than those observed for GBLUP-D in scenarios with large additive and dominance variances. When applied to prescreen important regions, the RF approach detected QTL with high additive and/or dominance effects. Among machine learning methods, only the RF was capable to cover implicitly dominance effects without increasing the number of covariates in the model, resulting in higher accuracies for the total genetic and phenotypic values as the dominance ratio increases. Nevertheless, whether the interest is to infer directly on dominance effects, GBLUP-D could be a more suitable method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温赢发布了新的文献求助10
2秒前
脑洞疼应助chen采纳,获得10
3秒前
3秒前
nananana完成签到 ,获得积分10
4秒前
4秒前
Jasper应助妍妍采纳,获得10
7秒前
7秒前
8秒前
勤奋凝阳发布了新的文献求助10
9秒前
9秒前
清澜庭完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
叫滚滚发布了新的文献求助10
11秒前
小鹿5460发布了新的文献求助10
12秒前
善学以致用应助家伟采纳,获得10
14秒前
Answer发布了新的文献求助10
14秒前
自由的蒜苗完成签到,获得积分10
14秒前
15秒前
yar应助年轻迪奥采纳,获得10
16秒前
16秒前
锂安完成签到,获得积分10
17秒前
18秒前
王檬完成签到,获得积分10
19秒前
19秒前
星辰大海应助efls采纳,获得10
19秒前
21秒前
leoan完成签到,获得积分10
21秒前
21秒前
阳光映秋完成签到,获得积分10
22秒前
24秒前
qipengli发布了新的文献求助10
24秒前
nananana发布了新的文献求助10
24秒前
25秒前
釉质牙医发布了新的文献求助10
25秒前
科研闲人完成签到,获得积分10
26秒前
家伟发布了新的文献求助10
26秒前
陈杰完成签到,获得积分10
27秒前
锤子发布了新的文献求助10
27秒前
薛如霜发布了新的文献求助10
27秒前
隐形曼青应助简单花花采纳,获得30
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500555
关于积分的说明 11099959
捐赠科研通 3231062
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869908
科研通“疑难数据库(出版商)”最低求助积分说明 801717