Genome-wide prediction for complex traits under the presence of dominance effects in simulated populations using GBLUP and machine learning methods

遗传力 优势(遗传学) 统计 随机森林 最佳线性无偏预测 支持向量机 生物 机器学习 均方误差 人工智能 数学 计算机科学 遗传学 选择(遗传算法) 基因
作者
Anderson Antônio Carvalho Alves,Rebeka Magalhães da Costa,Tiago Bresolin,Gerardo Alves Fernandes Júnior,Rafael Espigolan,André Mauric Frossard Ribeiro,Roberto Carvalheiro,Lúcia Galvão de Albuquerque
出处
期刊:Journal of Animal Science [Oxford University Press]
卷期号:98 (6) 被引量:19
标识
DOI:10.1093/jas/skaa179
摘要

Abstract The aim of this study was to compare the predictive performance of the Genomic Best Linear Unbiased Predictor (GBLUP) and machine learning methods (Random Forest, RF; Support Vector Machine, SVM; Artificial Neural Network, ANN) in simulated populations presenting different levels of dominance effects. Simulated genome comprised 50k SNP and 300 QTL, both biallelic and randomly distributed across 29 autosomes. A total of six traits were simulated considering different values for the narrow and broad-sense heritability. In the purely additive scenario with low heritability (h2 = 0.10), the predictive ability obtained using GBLUP was slightly higher than the other methods whereas ANN provided the highest accuracies for scenarios with moderate heritability (h2 = 0.30). The accuracies of dominance deviations predictions varied from 0.180 to 0.350 in GBLUP extended for dominance effects (GBLUP-D), from 0.06 to 0.185 in RF and they were null using the ANN and SVM methods. Although RF has presented higher accuracies for total genetic effect predictions, the mean-squared error values in such a model were worse than those observed for GBLUP-D in scenarios with large additive and dominance variances. When applied to prescreen important regions, the RF approach detected QTL with high additive and/or dominance effects. Among machine learning methods, only the RF was capable to cover implicitly dominance effects without increasing the number of covariates in the model, resulting in higher accuracies for the total genetic and phenotypic values as the dominance ratio increases. Nevertheless, whether the interest is to infer directly on dominance effects, GBLUP-D could be a more suitable method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
远方完成签到,获得积分10
1秒前
kiminonawa完成签到,获得积分0
2秒前
zrz完成签到,获得积分10
2秒前
3秒前
传奇3应助morlison采纳,获得10
3秒前
6秒前
6秒前
7秒前
8秒前
乐呀完成签到,获得积分10
8秒前
木头人呐完成签到 ,获得积分10
8秒前
小马甲应助吴岳采纳,获得10
8秒前
天天向上赶完成签到,获得积分10
8秒前
整齐的凡梦完成签到,获得积分10
9秒前
孙冉冉发布了新的文献求助10
10秒前
MHB应助towerman采纳,获得10
11秒前
Dean发布了新的文献求助10
11秒前
12秒前
加油加油发布了新的文献求助10
12秒前
lili完成签到 ,获得积分10
13秒前
文剑武书生完成签到,获得积分10
14秒前
科研通AI5应助无限鞅采纳,获得10
14秒前
14秒前
852应助木棉采纳,获得10
14秒前
15秒前
卓哥完成签到,获得积分10
16秒前
17秒前
Agan发布了新的文献求助10
17秒前
17秒前
18秒前
morlison发布了新的文献求助10
18秒前
科研通AI5应助金色年华采纳,获得10
20秒前
充电宝应助kh453采纳,获得10
20秒前
正经俠发布了新的文献求助10
20秒前
一衣发布了新的文献求助20
21秒前
可爱的函函应助药学牛马采纳,获得10
21秒前
XM发布了新的文献求助10
21秒前
专注之双完成签到,获得积分10
22秒前
SciGPT应助十一采纳,获得10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808