Statistical profiling for identifying transformation products in an engineered treatment process

仿形(计算机编程) 计算生物学 转化(遗传学) 过程(计算) 生化工程 计算机科学 工程类 化学 生物 生物化学 基因 操作系统
作者
Minkyu Park,Shane A. Snyder
出处
期刊:Chemosphere [Elsevier]
卷期号:251: 126401-126401 被引量:3
标识
DOI:10.1016/j.chemosphere.2020.126401
摘要

This study demonstrated statistical profiling consisting of the analysis of variance (ANOVA) and fold change to efficiently identify transformation products of an organic model compound (i.e., carbamazepine, CBZ) in ozonation. To this end, liquid chromatography (LC)-quadrupole time-of-flight mass spectrometry (QTOF-MS) was employed to measure the accurate masses of CBZ transformation products. Subsequently, statistical profiling was applied to differentiating features that are uniquely present in the ozonated samples from those in blanks and control (i.e., CBZ sample without ozonation). The identified transformation products had significant statistical power (i.e., power, 1-β > 0.8) in post hoc power analysis, which suggests that the profiling procedure can be an efficient means of reducing false negative in data analysis. 2-quinazolinone was newly reported here as a tentative transformation of CBZ during ozonation. In addition, a transformation product with one less carbon than CBZ, often called "anomalous" transformation product, was also found. While statistical profiling was applied to a model experiment, such an approach can be further utilized to screen many features with a higher data complexity such as non-targeted screening (NTS) and non-target analysis (NTA) for environmental samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keyantong完成签到 ,获得积分10
2秒前
booshu完成签到,获得积分10
3秒前
jy发布了新的文献求助10
4秒前
朴斓完成签到,获得积分10
4秒前
科研通AI5应助魏伯安采纳,获得10
7秒前
哈密哈密完成签到,获得积分10
7秒前
7秒前
Ava应助浪迹天涯采纳,获得10
7秒前
8秒前
安南发布了新的文献求助10
8秒前
9秒前
healthy完成签到 ,获得积分10
9秒前
10秒前
刘大可完成签到,获得积分10
10秒前
13秒前
su发布了新的文献求助10
13秒前
rookie发布了新的文献求助10
14秒前
方勇飞发布了新的文献求助10
15秒前
郭菱香完成签到 ,获得积分20
15秒前
皮念寒完成签到,获得积分10
15秒前
顺其自然_666888完成签到,获得积分10
15秒前
16秒前
向上的小v完成签到 ,获得积分10
17秒前
17秒前
19秒前
酷酷紫蓝完成签到 ,获得积分10
19秒前
19秒前
方勇飞完成签到,获得积分10
19秒前
LYZ完成签到,获得积分10
19秒前
黄景滨完成签到 ,获得积分20
20秒前
20秒前
123456完成签到,获得积分20
20秒前
hkl1542完成签到,获得积分10
21秒前
21秒前
caohuijun发布了新的文献求助10
22秒前
杳鸢应助韦颖采纳,获得20
23秒前
23秒前
wshwx完成签到 ,获得积分10
23秒前
23秒前
魏伯安发布了新的文献求助10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824