Optimal Kalman Consensus Filter for Weighted Directed Graphs

可观测性 计算机科学 卡尔曼滤波器 稳健性(进化) 启发式 数学优化 一致性算法 监督人 网络拓扑 理论计算机科学 算法 数学 人工智能 计算机网络 基因 法学 化学 生物化学 应用数学 政治学
作者
Shiraz Khan,Raj Deshmukh,Inseok Hwang
标识
DOI:10.1109/cdc40024.2019.9030070
摘要

The distributed estimation problem has proven to be a highly relevant topic today, due to its applicability in a wide variety of scenarios that do not accommodate a centralized supervisor. Decentralized algorithms can offer enhanced robustness and resilience to system failures and cyber-attacks. A seminal work on the topic was the development of the Kalman Consensus Filter (KCF), and recently the issue of the suboptimality of the KCF was addressed. However, in the KCF scheme, the sensor network is modeled as an unweighted undirected graph. This fact has been shown to severely degrade performance when certain assumptions on the network topology are not met, such as in the case of limited observability. Subsequent contributions in the field have implemented consensus based filters on directed graphs, but they either employ heuristic choices for the consensus gains or entail the sharing of information matrices between neighbors. In this paper, we address these issues by proposing an optimal distributed state estimation algorithm for weighted directed graphs. The proposed scheme is shown to be more versatile and offers critical performance improvements in scenarios where the KCF performs poorly. Specifically, we highlight the efficacy of the proposed algorithm in the presence of naïve sensors, through illustrative numerical examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晨曦光完成签到 ,获得积分10
2秒前
2秒前
6秒前
10秒前
12秒前
好运莲莲发布了新的文献求助10
13秒前
13秒前
15秒前
Yangyang应助fiona7777采纳,获得100
16秒前
Sunny发布了新的文献求助10
16秒前
lull发布了新的文献求助10
16秒前
一夜很静完成签到,获得积分10
17秒前
小二郎应助寻123采纳,获得10
17秒前
LiLy完成签到 ,获得积分10
18秒前
evisure发布了新的文献求助10
19秒前
淼淼之锋发布了新的文献求助10
20秒前
21秒前
Ava应助好运莲莲采纳,获得10
23秒前
24秒前
无敌反派大美人应助weitq66采纳,获得10
24秒前
小吴同学完成签到,获得积分10
26秒前
evisure完成签到,获得积分10
26秒前
28秒前
小伙子发布了新的文献求助10
28秒前
tuanheqi应助Andrew采纳,获得20
30秒前
32秒前
lull发布了新的文献求助10
33秒前
36秒前
笑点低的火龙果完成签到,获得积分20
36秒前
天天快乐应助哈哈采纳,获得10
37秒前
包采梦发布了新的文献求助30
37秒前
十三完成签到,获得积分10
38秒前
小奇完成签到,获得积分20
38秒前
39秒前
40秒前
莉莉安完成签到 ,获得积分10
40秒前
小伙子完成签到,获得积分0
40秒前
41秒前
十三发布了新的文献求助10
42秒前
42秒前
高分求助中
Comprehensive natural products III : chemistry and biology 3000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346534
求助须知:如何正确求助?哪些是违规求助? 2973237
关于积分的说明 8658336
捐赠科研通 2653621
什么是DOI,文献DOI怎么找? 1453288
科研通“疑难数据库(出版商)”最低求助积分说明 672801
邀请新用户注册赠送积分活动 662717