A Multi-Domain Connectome Convolutional Neural Network for Identifying Schizophrenia From EEG Connectivity Patterns

计算机科学 卷积神经网络 人工智能 连接体 模式识别(心理学) 精神分裂症(面向对象编程) 领域(数学分析) 功能连接 脑电图 神经科学 心理学 数学 数学分析 程序设计语言
作者
Chun-Ren Phang,Fuad Noman,Hadri Hussain,Chee-Ming Ting,Hernando Ombao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (5): 1333-1343 被引量:142
标识
DOI:10.1109/jbhi.2019.2941222
摘要

We exploit altered patterns in brain functional connectivity as features for automatic discriminative analysis of neuropsychiatric patients. Deep learning methods have been introduced to functional network classification only very recently for fMRI, and the proposed architectures essentially focused on a single type of connectivity measure. We propose a deep convolutional neural network (CNN) framework for classification of electroencephalogram (EEG)-derived brain connectome in schizophrenia (SZ). To capture complementary aspects of disrupted connectivity in SZ, we explore combination of various connectivity features consisting of time and frequency-domain metrics of effective connectivity based on vector autoregressive model and partial directed coherence, and complex network measures of network topology. We design a novel multi-domain connectome CNN (MDC-CNN) based on a parallel ensemble of 1D and 2D CNNs to integrate the features from various domains and dimensions using different fusion strategies. Hierarchical latent representations learned by the multiple convolutional layers from EEG connectivity reveal apparent group differences between SZ and healthy controls (HC). Results on a large resting-state EEG dataset show that the proposed CNNs significantly outperform traditional support vector machine classifiers. The MDC-CNN with combined connectivity features further improves performance over single-domain CNNs using individual features, achieving remarkable accuracy of $93.06\%$ with a decision-level fusion. The proposed MDC-CNN by integrating information from diverse brain connectivity descriptors is able to accurately discriminate SZ from HC. The new framework is potentially useful for developing diagnostic tools for SZ and other disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
听话的代芙关注了科研通微信公众号
刚刚
yueoho完成签到,获得积分10
1秒前
1秒前
CodeCraft应助谷粱紫槐采纳,获得10
2秒前
2秒前
xxx发布了新的文献求助10
2秒前
北遇发布了新的文献求助10
4秒前
4秒前
一一完成签到,获得积分10
7秒前
Khaleel发布了新的文献求助10
7秒前
慕青应助KINDMAGIC采纳,获得10
7秒前
小李发布了新的文献求助10
8秒前
9秒前
cryscilla完成签到,获得积分10
10秒前
10秒前
ckz完成签到,获得积分10
11秒前
11秒前
积极人偶酱完成签到,获得积分10
12秒前
xxx完成签到,获得积分10
13秒前
14秒前
啾啾发布了新的文献求助10
15秒前
katy发布了新的文献求助10
17秒前
我是老大应助mmd采纳,获得10
18秒前
21秒前
啾啾完成签到,获得积分10
22秒前
怕黑书翠完成签到,获得积分20
23秒前
24秒前
含蓄垣发布了新的文献求助10
24秒前
爆米花应助123采纳,获得10
26秒前
怕黑书翠发布了新的文献求助10
28秒前
嘟噜完成签到 ,获得积分10
28秒前
折耳根完成签到 ,获得积分10
28秒前
今后应助婳嬨采纳,获得10
30秒前
32秒前
流浪完成签到,获得积分10
35秒前
36秒前
36秒前
隐形曼青应助科研通管家采纳,获得10
37秒前
37秒前
思源应助科研通管家采纳,获得10
37秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741430
求助须知:如何正确求助?哪些是违规求助? 3284094
关于积分的说明 10038212
捐赠科研通 3000880
什么是DOI,文献DOI怎么找? 1646852
邀请新用户注册赠送积分活动 783919
科研通“疑难数据库(出版商)”最低求助积分说明 750478