已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Multi-Domain Connectome Convolutional Neural Network for Identifying Schizophrenia From EEG Connectivity Patterns

计算机科学 卷积神经网络 人工智能 连接体 模式识别(心理学) 精神分裂症(面向对象编程) 领域(数学分析) 功能连接 脑电图 神经科学 心理学 数学 数学分析 程序设计语言
作者
Chun-Ren Phang,Fuad Noman,Hadri Hussain,Chee-Ming Ting,Hernando Ombao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (5): 1333-1343 被引量:142
标识
DOI:10.1109/jbhi.2019.2941222
摘要

We exploit altered patterns in brain functional connectivity as features for automatic discriminative analysis of neuropsychiatric patients. Deep learning methods have been introduced to functional network classification only very recently for fMRI, and the proposed architectures essentially focused on a single type of connectivity measure. We propose a deep convolutional neural network (CNN) framework for classification of electroencephalogram (EEG)-derived brain connectome in schizophrenia (SZ). To capture complementary aspects of disrupted connectivity in SZ, we explore combination of various connectivity features consisting of time and frequency-domain metrics of effective connectivity based on vector autoregressive model and partial directed coherence, and complex network measures of network topology. We design a novel multi-domain connectome CNN (MDC-CNN) based on a parallel ensemble of 1D and 2D CNNs to integrate the features from various domains and dimensions using different fusion strategies. Hierarchical latent representations learned by the multiple convolutional layers from EEG connectivity reveal apparent group differences between SZ and healthy controls (HC). Results on a large resting-state EEG dataset show that the proposed CNNs significantly outperform traditional support vector machine classifiers. The MDC-CNN with combined connectivity features further improves performance over single-domain CNNs using individual features, achieving remarkable accuracy of $93.06\%$ with a decision-level fusion. The proposed MDC-CNN by integrating information from diverse brain connectivity descriptors is able to accurately discriminate SZ from HC. The new framework is potentially useful for developing diagnostic tools for SZ and other disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大帅比完成签到 ,获得积分10
1秒前
循环bug完成签到,获得积分10
2秒前
赵田完成签到 ,获得积分10
3秒前
5秒前
scq完成签到 ,获得积分10
6秒前
赵琪完成签到,获得积分10
8秒前
8秒前
denise完成签到,获得积分10
10秒前
赵琪发布了新的文献求助10
11秒前
rsaorestoaerstn完成签到,获得积分10
12秒前
13秒前
Hello应助扎心采纳,获得10
14秒前
木深完成签到,获得积分10
16秒前
小乐儿~完成签到,获得积分10
18秒前
24秒前
26秒前
27秒前
27秒前
28秒前
旋转木马9个完成签到 ,获得积分10
28秒前
橙子快跑发布了新的文献求助10
29秒前
朝气完成签到,获得积分10
30秒前
30秒前
Hello应助白大帅气采纳,获得10
31秒前
容言完成签到,获得积分10
31秒前
学渣路过完成签到,获得积分0
32秒前
Owen应助科研通管家采纳,获得10
32秒前
32秒前
深情安青应助科研通管家采纳,获得10
32秒前
liyun发布了新的文献求助10
33秒前
34秒前
hushan53发布了新的文献求助10
36秒前
37秒前
已拿捏催化剂完成签到 ,获得积分10
40秒前
41秒前
扎心发布了新的文献求助10
42秒前
42秒前
ls完成签到,获得积分10
43秒前
43秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314323
求助须知:如何正确求助?哪些是违规求助? 2946571
关于积分的说明 8530851
捐赠科研通 2622316
什么是DOI,文献DOI怎么找? 1434442
科研通“疑难数据库(出版商)”最低求助积分说明 665310
邀请新用户注册赠送积分活动 650838