自养
固碳
异养
生物
甲酸脱氢酶
商品化学品
格式化
恒化器
混合营养体
大肠杆菌
鲁比斯科
能源
生物量(生态学)
碳纤维
生化工程
环境化学
食品科学
可再生能源
二氧化碳
光合作用
细菌
生态学
生物化学
化学
材料科学
催化作用
复合材料
工程类
复合数
基因
遗传学
作者
Shmuel Gleizer,Roee Ben-Nissan,Yinon M. Bar-On,Niv Antonovsky,Elad Noor,Yehudit Zohar,Ghil Jona,Eyal Krieger,Melina Shamshoum,Arren Bar‐Even
出处
期刊:Cell
[Elsevier]
日期:2019-11-01
卷期号:179 (6): 1255-1263.e12
被引量:335
标识
DOI:10.1016/j.cell.2019.11.009
摘要
The living world is largely divided into autotrophs that convert CO2 into biomass and heterotrophs that consume organic compounds. In spite of widespread interest in renewable energy storage and more sustainable food production, the engineering of industrially relevant heterotrophic model organisms to use CO2 as their sole carbon source has so far remained an outstanding challenge. Here, we report the achievement of this transformation on laboratory timescales. We constructed and evolved Escherichia coli to produce all its biomass carbon from CO2. Reducing power and energy, but not carbon, are supplied via the one-carbon molecule formate, which can be produced electrochemically. Rubisco and phosphoribulokinase were co-expressed with formate dehydrogenase to enable CO2 fixation and reduction via the Calvin-Benson-Bassham cycle. Autotrophic growth was achieved following several months of continuous laboratory evolution in a chemostat under intensifying organic carbon limitation and confirmed via isotopic labeling.
科研通智能强力驱动
Strongly Powered by AbleSci AI