How low must you go? Effects of low-level noise on cochlear neural response

听觉亢进 耳蜗 听力学 噪音(视频) 外围设备 听觉疲劳 耳鸣 强度(物理) 神经可塑性 神经科学 听觉系统 听力损失 噪声暴露 医学 生物 物理 内科学 计算机科学 人工智能 图像(数学) 量子力学
作者
Xiaopeng Liu,Li Li,Guang‐Di Chen,Richard Salvi
出处
期刊:Hearing Research [Elsevier]
卷期号:392: 107980-107980 被引量:9
标识
DOI:10.1016/j.heares.2020.107980
摘要

Prolonged exposure to low-level noise has often been used scientifically as well as clinically to induce neuroplastic changes within the central auditory pathway in order to reduce central gain, suppress tinnitus and hyperacusis, and modulate different features of central auditory processing. A fundamental assumption underling these studies is that the noise exposure levels are so low that they have no effect on the neural output of the cochlea. Therefore, functional changes occurring in the central auditory pathway must be the results of central rather than peripheral changes. In an attempt to identify long-term noise exposures that did not cause peripheral changes, we measured the compound action potential (CAP) input/output functions from control rats and rats exposed for 6-weeks to 18–24 kHz noise presented at 25, 45, 55, 65, 75 or 85 dB SPL. Exposures >65 dB SPL significantly increased CAP thresholds; the critical intensity (Ct) below which no threshold shift occurred was estimated to be 55 dB SPL. Exposures >55 dB SPL significantly reduced suprathreshold CAP amplitudes; the critical intensity (Ca) below which no amplitude change was predicted to occur was a remarkably low level of 19 dB SPL. These results demonstrate that even extremely low-intensity long duration exposures can disrupt the neural output of the cochlea; these peripheral modifications are likely to contribute to the extensive compensatory changes observed at multiple levels of the central auditory pathway, neural network changes aimed at re-establishing homeostasis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仚屳完成签到,获得积分10
刚刚
Naixi完成签到,获得积分10
刚刚
今后应助HU采纳,获得10
刚刚
su完成签到 ,获得积分10
2秒前
平淡的依白完成签到,获得积分20
2秒前
xinchengzhu关注了科研通微信公众号
2秒前
爱静静应助tao采纳,获得10
3秒前
iNk应助Rebekah采纳,获得10
3秒前
HopeStar完成签到,获得积分10
4秒前
树叶有专攻完成签到,获得积分10
4秒前
4秒前
田様应助Mia采纳,获得20
4秒前
所所应助吃点红糖馒头采纳,获得10
4秒前
今后应助PSCs采纳,获得10
4秒前
5秒前
duguqiubai4发布了新的文献求助10
5秒前
独特的沛凝完成签到,获得积分10
7秒前
思源应助淇淇怪怪采纳,获得10
7秒前
领导范儿应助徐慕源采纳,获得10
7秒前
听粥完成签到,获得积分10
8秒前
高高迎蓉完成签到,获得积分10
8秒前
豆花完成签到,获得积分10
8秒前
SYLH应助风趣的无剑采纳,获得10
8秒前
悲伤水凝胶完成签到,获得积分10
8秒前
鲸鱼完成签到,获得积分10
10秒前
huangqinxue完成签到,获得积分10
10秒前
11秒前
11秒前
Tina完成签到,获得积分10
11秒前
电催化皮皮完成签到,获得积分10
11秒前
大模型应助阿蒙采纳,获得10
12秒前
duguqiubai4完成签到,获得积分10
12秒前
13秒前
meta完成签到,获得积分10
13秒前
大饼完成签到,获得积分10
14秒前
爆米花应助WJM采纳,获得10
14秒前
xiexuqin完成签到,获得积分10
14秒前
14秒前
silentJeremy发布了新的文献求助200
15秒前
JonyiCheng完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678