已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Scalable Parallel Task Scheduling for Autonomous Driving Using Multi-Task Deep Reinforcement Learning

计算机科学 强化学习 分布式计算 可扩展性 维数之咒 任务(项目管理) 调度(生产过程) 粒子群优化 任务管理 人工智能 机器学习 运营管理 数据库 经济 管理
作者
Qi Qi,Lingxin Zhang,Jingyu Wang,Haifeng Sun,Zirui Zhuang,Jianxin Liao,F. Richard Yu
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:69 (11): 13861-13874 被引量:51
标识
DOI:10.1109/tvt.2020.3029864
摘要

The Internet of Vehicles (IoV) as a promising application of Internet of Things (IoT) has played a significant role in autonomous driving, by connecting intelligent vehicles. Autonomous driving needs to process the mass environmental sensing data in coordination with surrounding vehicles, and makes an accurate driving judgment accordingly. Since the vehicles always have limited computing resources, processing these data in parallel with efficient task scheduling is one of the most important topics. Most current work focuses on formulating special scenarios and service requirements as optimization problems. However, the complicated and dynamic environment of vehicular computing is hard to model, predict and control, making those previous methods unscalable and unable to reflect the real scenario. In this paper, a Multi-task Deep reinforcement learning approach for scalable parallel Task Scheduling (MDTS) is firstly devised. For avoiding the curse of dimensionality when coping with complex parallel computing environments and jobs with diverse properties, we extend the action selection in Deep Reinforcement Learning (DRL) to a multi-task decision, where the output branches of multi- task learning are fine-matched to parallel scheduling tasks. Child tasks of a job are accordingly assigned to distributed nodes without any human knowledge while the resource competition among parallel tasks is leveraged through shared neural network layers. Moreover, we design an appropriate reward function to optimize multiple metrics simultaneously, with emphasis on specific scenarios. Extensive experiments show that the MDTS significantly increases the overall reward compared with least- connection scheduling and particle swarm optimization algorithm from -16.71, -0.67 to 2.93, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助Nothing采纳,获得10
3秒前
3秒前
Xu完成签到 ,获得积分10
4秒前
5秒前
内向绿竹发布了新的文献求助10
5秒前
8秒前
机灵宛白发布了新的文献求助30
9秒前
上官尔芙完成签到,获得积分10
12秒前
Nothing完成签到,获得积分10
15秒前
17秒前
Bety关注了科研通微信公众号
18秒前
田様应助冷艳的海白采纳,获得10
20秒前
Nothing发布了新的文献求助10
21秒前
21秒前
22秒前
GGYY发布了新的文献求助10
26秒前
29秒前
29秒前
lala完成签到,获得积分10
31秒前
32秒前
无花果应助小孙采纳,获得10
33秒前
Kristine完成签到 ,获得积分10
33秒前
33秒前
33秒前
扬大小汤发布了新的文献求助10
35秒前
阿柱哥完成签到,获得积分10
36秒前
滕友桃发布了新的文献求助10
37秒前
yyy发布了新的文献求助10
38秒前
hollow完成签到,获得积分10
41秒前
扬大小汤完成签到,获得积分10
41秒前
Spine发布了新的文献求助10
42秒前
42秒前
阿柱哥发布了新的文献求助10
43秒前
44秒前
丘比特应助polaris采纳,获得10
46秒前
零慧发布了新的文献求助10
50秒前
52秒前
复杂静竹发布了新的文献求助10
52秒前
斯文败类应助自信向梦采纳,获得10
52秒前
科研通AI2S应助LX采纳,获得10
55秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3072376
求助须知:如何正确求助?哪些是违规求助? 2726162
关于积分的说明 7492979
捐赠科研通 2373785
什么是DOI,文献DOI怎么找? 1258716
科研通“疑难数据库(出版商)”最低求助积分说明 610362
版权声明 596952