Prognostics and Health Management of Industrial Assets: Current Progress and Road Ahead

预言 可解释性 风险分析(工程) 交叉口(航空) 计算机科学 人工智能 数据科学 机器学习 工程类 数据挖掘 运输工程 医学
作者
Luca Biggio,Iason Kastanis
出处
期刊:Frontiers in artificial intelligence [Frontiers Media SA]
卷期号:3 被引量:68
标识
DOI:10.3389/frai.2020.578613
摘要

Prognostic and Health Management (PHM) systems are some of the main protagonists of the Industry 4.0 revolution. Efficiently detecting whether an industrial component has deviated from its normal operating condition or predicting when a fault will occur are the main challenges these systems aim at addressing. Efficient PHM methods promise to decrease the probability of extreme failure events, thus improving the safety level of industrial machines. Furthermore, they could potentially drastically reduce the often conspicuous costs associated with scheduled maintenance operations. The increasing availability of data and the stunning progress of Machine Learning (ML) techniques over the last decade represent two strong motivating factors for the development of data-driven PHM systems. In particular, Deep Learning (DL) models have been able to provide unprecedented results in several data analysis tasks ranging from Image Recognition (IR) to Natural Language Processing (NLP). In light of these surprising achievements, the development of PHM methods based on Artificial Intelligence (AI) techniques is extremely appealing. Nonetheless, the black-box nature of DL models significantly hinders their level of interpretability, de facto limiting their application to real-world scenarios. In this work, we explore the intersection of AI methods and PHM applications. We present a thorough review of existing works both in the contexts of fault diagnosis and fault prognosis, highlighting the benefits and the drawbacks introduced by the adoption of AI techniques. Our goal is to highlight potentially fruitful research directions along with characterizing the main challenges that need to be addressed in order to realize the promises of AI-based PHM systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
弟弟发布了新的文献求助10
1秒前
1秒前
ppppppp_76发布了新的文献求助10
3秒前
5秒前
猪猪hero发布了新的文献求助10
5秒前
眯眯眼的衬衫应助superworm1采纳,获得10
5秒前
一缕阳光发布了新的文献求助10
6秒前
朱由校发布了新的文献求助10
7秒前
上官若男应助某某某采纳,获得10
7秒前
10秒前
yifanchen发布了新的文献求助20
10秒前
10秒前
11秒前
14秒前
Ava应助猪猪hero采纳,获得10
14秒前
MaoM发布了新的文献求助10
14秒前
希望天下0贩的0应助Mxs采纳,获得30
16秒前
思源应助林子青采纳,获得10
18秒前
脑洞疼应助活力的曼柔采纳,获得10
18秒前
隐形曼青应助海里采纳,获得10
19秒前
伶俐越泽发布了新的文献求助10
20秒前
科研通AI2S应助派派采纳,获得10
24秒前
英俊的铭应助科研通管家采纳,获得10
24秒前
orixero应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
25秒前
MaoM完成签到,获得积分10
25秒前
研友_VZG7GZ应助zz采纳,获得10
27秒前
28秒前
30秒前
称心梦之发布了新的文献求助10
32秒前
33秒前
35秒前
38秒前
搜集达人应助称心梦之采纳,获得10
38秒前
wxy发布了新的文献求助10
39秒前
某某某发布了新的文献求助10
40秒前
简单的八宝粥完成签到,获得积分10
40秒前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3380984
求助须知:如何正确求助?哪些是违规求助? 2996028
关于积分的说明 8766809
捐赠科研通 2681168
什么是DOI,文献DOI怎么找? 1468427
科研通“疑难数据库(出版商)”最低求助积分说明 678988
邀请新用户注册赠送积分活动 671049