亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Recent Trends in Drug Design and Discovery

可药性 药物发现 计算机科学 数量结构-活动关系 领域(数学) 鉴定(生物学) 过程(计算) 机器学习 数据挖掘 计算生物学 人工智能 生物信息学 生物 数学 生物化学 植物 基因 纯数学 操作系统
作者
D. Velmurugan,Raman Pachaiappan,C. V. Ramakrishnan
出处
期刊:Current Topics in Medicinal Chemistry [Bentham Science]
卷期号:20 (19): 1761-1770 被引量:15
标识
DOI:10.2174/1568026620666200622150003
摘要

Introduction: Structure-based drug design is a wide area of identification of selective inhibitors of a target of interest. From the time of the availability of three dimensional structure of the drug targets, mostly the proteins, many computational methods had emerged to address the challenges associated with drug design process. Particularly, drug-likeness, druggability of the target protein, specificity, off-target binding, etc., are the important factors to determine the efficacy of new chemical inhibitors. Objective: The aim of the present research was to improve the drug design strategies in field of design of novel inhibitors with respect to specific target protein in disease pathology. Recent statistical machine learning methods applied for structural and chemical data analysis had been elaborated in current drug design field. Methods: As the size of the biological data shows a continuous growth, new computational algorithms and analytical methods are being developed with different objectives. It covers a wide area, from protein structure prediction to drug toxicity prediction. Moreover, the computational methods are available to analyze the structural data of varying types and sizes of which, most of the semi-empirical force field and quantum mechanics based molecular modeling methods showed a proven accuracy towards analysing small structural data sets while statistics based methods such as machine learning, QSAR and other specific data analytics methods are robust for large scale data analysis. Results: In this present study, the background has been reviewed for new drug lead development with respect specific drug targets of interest. Overall approach of both the extreme methods were also used to demonstrate with the plausible outcome. Conclusion: In this chapter, we focus on the recent developments in the structure-based drug design using advanced molecular modeling techniques in conjunction with machine learning and other data analytics methods. Natural products based drug discovery is also discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
powell完成签到,获得积分10
3秒前
CATH完成签到 ,获得积分10
4秒前
mm完成签到 ,获得积分10
7秒前
Mottri完成签到 ,获得积分10
8秒前
杳鸢应助云枝采纳,获得10
9秒前
17秒前
等待的剑身完成签到,获得积分10
19秒前
19秒前
云枝应助文件撤销了驳回
24秒前
如果多年后完成签到 ,获得积分10
34秒前
酷酷的爆米花应助dilmurat10采纳,获得10
36秒前
8R60d8应助王韵迪采纳,获得10
42秒前
44秒前
47秒前
陈海明发布了新的文献求助10
49秒前
矮小的盼夏完成签到 ,获得积分10
49秒前
WerWu完成签到,获得积分10
55秒前
57秒前
陈海明完成签到,获得积分20
58秒前
58秒前
璨澄完成签到 ,获得积分10
1分钟前
teaser完成签到 ,获得积分10
1分钟前
贪玩菲音完成签到,获得积分10
1分钟前
wook完成签到,获得积分10
1分钟前
1分钟前
小姚姚完成签到 ,获得积分10
1分钟前
1分钟前
犹豫若之发布了新的文献求助10
1分钟前
liuminghui发布了新的文献求助10
1分钟前
疯狂喵完成签到 ,获得积分10
1分钟前
1分钟前
d.zhang完成签到,获得积分10
1分钟前
超级雪碧关注了科研通微信公众号
1分钟前
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
火山大王发布了新的文献求助10
1分钟前
2分钟前
2分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229674
求助须知:如何正确求助?哪些是违规求助? 2877215
关于积分的说明 8198517
捐赠科研通 2544654
什么是DOI,文献DOI怎么找? 1374549
科研通“疑难数据库(出版商)”最低求助积分说明 646996
邀请新用户注册赠送积分活动 621774