Piezoelectric energy harvesting from roadway deformation under various traffic flow conditions

压电 能量收集 能量(信号处理) 功率(物理) 电压 流量(数学) 变形(气象学) 压电传感器 机械能 工程类 声学 结构工程 汽车工程 材料科学 机械 电气工程 物理 复合材料 量子力学
作者
Yangyang Zhang,He Zhang,Chaofeng Lü,Yisheng Chen,Ji Wang
出处
期刊:Journal of Intelligent Material Systems and Structures [SAGE]
卷期号:31 (15): 1751-1762 被引量:13
标识
DOI:10.1177/1045389x20930089
摘要

Many laboratory tests and in situ measurements have been conducted to study piezoelectric energy harvesting from roadway deformation. However, the performance of piezoelectric energy harvesters under real traffic flow conditions is still unknown. In this study, an electromechanical model of piezoelectric energy harvesters with detailed parameters (including the geometric parameters, material parameters, and circuits) is established, and the influences of traffic flow conditions (i.e. traffic speed and traffic density) on the output power of piezoelectric energy harvesters are analyzed by employing a scaling law method and traffic flow theory. The results indicate that remarkable differences exist in the load patterns and the frequencies between the laboratory tests (or in situ measurements) and real traffic flow conditions. Because of these differences, the results (especially the output electric power and optimization design methods) of previous studies may be inapplicable for piezoelectric energy harvesters embedded in roadways. Considering the distinguishing features of the traffic load pattern, the optimization criteria to determine the geometric parameters and the intrinsic system parameter of piezoelectric energy harvesters are obtained, and the corresponding optimal output power densities of the piezoelectric energy harvesters are also quantitatively calibrated. These theoretical results may serve as guidelines for optimizing the design of piezoelectric energy harvesters embedded in roadways under different traffic flow conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
三卡车安排你完成签到,获得积分10
1秒前
请叫我风吹麦浪应助Seiswan采纳,获得10
1秒前
1秒前
2秒前
2秒前
2秒前
3秒前
曾经以亦完成签到,获得积分10
3秒前
所所应助发疯的游子采纳,获得10
3秒前
4秒前
jcm发布了新的文献求助10
5秒前
辛勤的初晴完成签到,获得积分20
5秒前
Scidog发布了新的文献求助10
5秒前
单于静柏完成签到,获得积分10
6秒前
校长发布了新的文献求助10
6秒前
7秒前
御觞丶完成签到,获得积分10
7秒前
今后应助zhui采纳,获得10
8秒前
8秒前
SciGPT应助雾蓝采纳,获得10
8秒前
lulu828完成签到,获得积分10
9秒前
9秒前
科研闲人完成签到,获得积分10
10秒前
内向秋寒发布了新的文献求助10
10秒前
10秒前
黑色兔子完成签到 ,获得积分10
10秒前
11秒前
四小时充足睡眠完成签到,获得积分10
12秒前
zhang0403完成签到,获得积分10
12秒前
欢喜的毛豆完成签到 ,获得积分10
13秒前
华仔应助Eddy采纳,获得10
13秒前
小王发布了新的文献求助10
13秒前
通~发布了新的文献求助10
14秒前
MES发布了新的文献求助10
14秒前
赘婿应助jennifercui采纳,获得10
14秒前
14秒前
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794