Lattice constant prediction of A2XY6 cubic crystals (A = K, Cs, Rb, TI; X = tetravalent cation; Y = F, Cl, Br, I) using computational intelligence approach

晶格常数 电负性 离子半径 晶体结构 格子(音乐) 非线性系统 Crystal(编程语言) 计算 材料科学 数学 热力学 统计物理学 凝聚态物理 算法 化学 计算机科学 离子 物理 衍射 结晶学 量子力学 声学 程序设计语言
作者
Ibrahim Olanrewaju Alade,Ismail Adewale Olumegbon,Aliyu Bagudu
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:127 (1) 被引量:42
标识
DOI:10.1063/1.5130664
摘要

Lattice constant mismatch between materials affects the quality of thin film fabrication. For this reason, lattice constants information is vital in the design of materials for technological applications. The determination of lattice constants via experimental analysis is relatively expensive and laborious. As a result, several linear empirical models have been proposed to predict the lattice constant of crystal structures. However, the accuracies of these models are limited partly due to their failure to account for nonlinearity in the atomic parameters-lattice constant relationship. Machine learning techniques have shown excellent ability to deal with nonlinear problems in many areas of materials science; hence, they are considered suitable computation tools to study the crystal structure of materials. In this contribution, we developed a support vector regression (SVR) model to predict the lattice constant of cubic crystals of the form A2XY6 (A = K, Cs, Rb, TI; X = tetravalent cation; and Y = F, Cl, Br, I). The SVR algorithm uses the ionic radii and electronegativities data of the constituent elements of A2XY6 cubic crystals as model inputs. The robustness of the proposed model was demonstrated by comparing our result with an existing linear model based on 26 cubic crystal samples. The result revealed a total relative deviation of 1.757 and 2.704 for the SVR model and the existing linear equation, respectively. This result proves that the SVR model has a huge potential in the search for new materials for different applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
所所应助张涛采纳,获得10
3秒前
3秒前
ding应助超越好帅采纳,获得10
4秒前
琦琦完成签到 ,获得积分0
6秒前
科研通AI2S应助xzy998采纳,获得10
6秒前
haoyunchangza发布了新的文献求助20
7秒前
KK完成签到,获得积分20
8秒前
尊敬曼岚发布了新的文献求助10
8秒前
呆萌冰烟发布了新的文献求助10
9秒前
9秒前
木子完成签到,获得积分10
10秒前
10秒前
搜集达人应助大橙子采纳,获得30
12秒前
Jasper应助刻苦的尔白采纳,获得10
12秒前
吃猫的鱼发布了新的文献求助10
14秒前
eve完成签到,获得积分20
14秒前
超越好帅发布了新的文献求助10
14秒前
甜蜜的物语完成签到,获得积分10
15秒前
迷人的绿茶完成签到,获得积分10
16秒前
16秒前
ZcLee完成签到,获得积分20
17秒前
包容店员完成签到 ,获得积分10
18秒前
22秒前
23秒前
24秒前
杳鸢应助流星采纳,获得30
24秒前
沉静的红酒完成签到,获得积分10
26秒前
26秒前
neckerzhu完成签到 ,获得积分10
26秒前
28秒前
博修发布了新的文献求助10
28秒前
28秒前
nyzcc完成签到,获得积分10
29秒前
欣喜莫茗发布了新的文献求助10
30秒前
动听千风发布了新的文献求助10
31秒前
yyjdtc完成签到,获得积分10
31秒前
31秒前
Owen应助呆萌冰烟采纳,获得20
32秒前
Akim应助超越好帅采纳,获得10
32秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Encyclopedia of Computational Mechanics,2 edition 800
The Healthy Socialist Life in Maoist China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3271144
求助须知:如何正确求助?哪些是违规求助? 2910356
关于积分的说明 8353976
捐赠科研通 2580873
什么是DOI,文献DOI怎么找? 1403826
科研通“疑难数据库(出版商)”最低求助积分说明 656001
邀请新用户注册赠送积分活动 635381