Deep Convolutional Neural Network–based Software Improves Radiologist Detection of Malignant Lung Nodules on Chest Radiographs

医学 射线照相术 放射科 卷积神经网络 人工智能 内科学 计算机科学
作者
Yongsik Sim,Myung Jin Chung,Elmar Kotter,Sehyo Yune,Myeongchan Kim,Synho Do,Kyunghwa Han,Hanmyoung Kim,Seungwook Yang,Dong-Jae Lee,Byoung Wook Choi
出处
期刊:Radiology [Radiological Society of North America]
卷期号:294 (1): 199-209 被引量:207
标识
DOI:10.1148/radiol.2019182465
摘要

Background Multicenter studies are required to validate the added benefit of using deep convolutional neural network (DCNN) software for detecting malignant pulmonary nodules on chest radiographs. Purpose To compare the performance of radiologists in detecting malignant pulmonary nodules on chest radiographs when assisted by deep learning–based DCNN software with that of radiologists or DCNN software alone in a multicenter setting. Materials and Methods Investigators at four medical centers retrospectively identified 600 lung cancer–containing chest radiographs and 200 normal chest radiographs. Each radiograph with a lung cancer had at least one malignant nodule confirmed by CT and pathologic examination. Twelve radiologists from the four centers independently analyzed the chest radiographs and marked regions of interest. Commercially available deep learning–based computer-aided detection software separately trained, tested, and validated with 19 330 radiographs was used to find suspicious nodules. The radiologists then reviewed the images with the assistance of DCNN software. The sensitivity and number of false-positive findings per image of DCNN software, radiologists alone, and radiologists with the use of DCNN software were analyzed by using logistic regression and Poisson regression. Results The average sensitivity of radiologists improved (from 65.1% [1375 of 2112; 95% confidence interval {CI}: 62.0%, 68.1%] to 70.3% [1484 of 2112; 95% CI: 67.2%, 73.1%], P < .001) and the number of false-positive findings per radiograph declined (from 0.2 [488 of 2400; 95% CI: 0.18, 0.22] to 0.18 [422 of 2400; 95% CI: 0.16, 0.2], P < .001) when the radiologists re-reviewed radiographs with the DCNN software. For the 12 radiologists in this study, 104 of 2400 radiographs were positively changed (from false-negative to true-positive or from false-positive to true-negative) using the DCNN, while 56 of 2400 radiographs were changed negatively. Conclusion Radiologists had better performance with deep convolutional network software for the detection of malignant pulmonary nodules on chest radiographs than without. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Jacobson in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小黄完成签到,获得积分10
刚刚
doctorbba完成签到,获得积分10
1秒前
xiying发布了新的文献求助10
1秒前
2秒前
3秒前
请叫我风吹麦浪应助盛夏采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
doctorbba发布了新的文献求助30
4秒前
云朵完成签到,获得积分10
4秒前
5秒前
偲偲偲偲偲完成签到,获得积分10
5秒前
Singularity应助阿巴阿巴采纳,获得10
5秒前
甜甜的冷霜完成签到,获得积分10
5秒前
ding应助zxy采纳,获得10
7秒前
7秒前
9秒前
Justin发布了新的文献求助10
9秒前
yu完成签到,获得积分10
9秒前
9秒前
9秒前
阿宅完成签到,获得积分10
10秒前
玲哥儿完成签到,获得积分10
10秒前
11秒前
11秒前
犹豫寒云完成签到,获得积分10
11秒前
12秒前
超级白昼发布了新的文献求助10
12秒前
科研通AI5应助wxh采纳,获得10
13秒前
Abi发布了新的文献求助10
14秒前
西柚芝士茉莉完成签到,获得积分10
14秒前
Bin_Lau关注了科研通微信公众号
14秒前
14秒前
14秒前
15秒前
16秒前
乔治完成签到 ,获得积分10
16秒前
Air发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563901
求助须知:如何正确求助?哪些是违规求助? 3137137
关于积分的说明 9421201
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559912
邀请新用户注册赠送积分活动 729212
科研通“疑难数据库(出版商)”最低求助积分说明 717197