谣言
计算机科学
社会化媒体
事件(粒子物理)
情态动词
人工智能
水准点(测量)
数据科学
机器学习
情报检索
万维网
化学
大地测量学
高分子化学
地理
物理
量子力学
公共关系
政治学
作者
Huaiwen Zhang,Quan Fang,Shengsheng Qian,Changsheng Xu
标识
DOI:10.1145/3343031.3350850
摘要
The wide dissemination and misleading effects of online rumors on social media have become a critical issue concerning the public and government. Detecting and regulating social media rumors is important for ensuring users receive truthful information and maintaining social harmony. Most of the existing rumor detection methods focus on inferring clues from media content and social context, which largely ignores the rich knowledge information behind the highly condensed text which is useful for rumor verification. Furthermore, existing rumor detection models underperform on unseen events because they tend to capture lots of event-specific features in seen data which cannot be transferred to newly emerged events. In order to address these issues, we propose a novel Multimodal Knowledge-aware Event Memory Network (MKEMN) which utilizes the Multi-modal Knowledge-aware Network (MKN) and Event Memory Network (EMN) as building blocks for social media rumor detection. Specifically, the MKN learns the multi-modal representation of the post on social media and retrieves external knowledge from real-world knowledge graph to complement the semantic representation of short texts of posts and takes conceptual knowledge as additional evidence to improve rumor detection. The EMN extracts event-invariant features of events and stores them into global memory. Given an event representation, the EMN takes it as a query to retrieve the memory network and output the corresponding features shared among events. With the additional information provided by EMN, our model can learn robust representations of events and consistently perform well on the newly emerged events. Extensive experiments on two Twitter benchmark datasets demonstrate that our rumor detection method achieves much better results than state-of-the-art methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI