Multi-modal Knowledge-aware Event Memory Network for Social Media Rumor Detection

谣言 计算机科学 社会化媒体 事件(粒子物理) 情态动词 人工智能 水准点(测量) 数据科学 机器学习 情报检索 万维网 化学 大地测量学 高分子化学 地理 物理 量子力学 公共关系 政治学
作者
Huaiwen Zhang,Quan Fang,Shengsheng Qian,Changsheng Xu
标识
DOI:10.1145/3343031.3350850
摘要

The wide dissemination and misleading effects of online rumors on social media have become a critical issue concerning the public and government. Detecting and regulating social media rumors is important for ensuring users receive truthful information and maintaining social harmony. Most of the existing rumor detection methods focus on inferring clues from media content and social context, which largely ignores the rich knowledge information behind the highly condensed text which is useful for rumor verification. Furthermore, existing rumor detection models underperform on unseen events because they tend to capture lots of event-specific features in seen data which cannot be transferred to newly emerged events. In order to address these issues, we propose a novel Multimodal Knowledge-aware Event Memory Network (MKEMN) which utilizes the Multi-modal Knowledge-aware Network (MKN) and Event Memory Network (EMN) as building blocks for social media rumor detection. Specifically, the MKN learns the multi-modal representation of the post on social media and retrieves external knowledge from real-world knowledge graph to complement the semantic representation of short texts of posts and takes conceptual knowledge as additional evidence to improve rumor detection. The EMN extracts event-invariant features of events and stores them into global memory. Given an event representation, the EMN takes it as a query to retrieve the memory network and output the corresponding features shared among events. With the additional information provided by EMN, our model can learn robust representations of events and consistently perform well on the newly emerged events. Extensive experiments on two Twitter benchmark datasets demonstrate that our rumor detection method achieves much better results than state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兔兔酱发布了新的文献求助10
2秒前
赫连涵柏完成签到,获得积分10
3秒前
3秒前
顺sci发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
牛太虚发布了新的文献求助10
5秒前
隐形曼青应助西岭采纳,获得10
7秒前
睡不醒啊发布了新的文献求助10
7秒前
9秒前
李健应助暮色微凉采纳,获得10
10秒前
10秒前
liusu发布了新的文献求助10
10秒前
Orange应助123采纳,获得10
11秒前
11秒前
天天快乐应助木棉的棉采纳,获得10
11秒前
YY发布了新的文献求助10
11秒前
12秒前
ttt完成签到 ,获得积分10
12秒前
牛太虚完成签到,获得积分10
14秒前
14秒前
风止发布了新的文献求助10
15秒前
器123完成签到,获得积分10
15秒前
16秒前
可爱的函函应助张张采纳,获得10
17秒前
18秒前
ttt关注了科研通微信公众号
20秒前
dlfg发布了新的文献求助10
20秒前
20秒前
卑微科研小白完成签到,获得积分10
22秒前
踏雪寻梅完成签到,获得积分20
23秒前
23秒前
辣辣发布了新的文献求助10
24秒前
华仔应助HongJiang采纳,获得10
24秒前
211完成签到,获得积分10
24秒前
Fuao发布了新的文献求助10
25秒前
黄耀发布了新的文献求助10
25秒前
26秒前
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145145
求助须知:如何正确求助?哪些是违规求助? 2796529
关于积分的说明 7820187
捐赠科研通 2452829
什么是DOI,文献DOI怎么找? 1305278
科研通“疑难数据库(出版商)”最低求助积分说明 627448
版权声明 601449