CorsNet: 3D Point Cloud Registration by Deep Neural Network

点云 人工智能 计算机科学 迭代最近点 深度学习 计算机视觉 点(几何) 雅可比矩阵与行列式 钥匙(锁) 机器人学 机器人 数学 几何学 应用数学 计算机安全
作者
Akiyoshi Kurobe,Yusuke Sekikawa,Kohta Ishikawa,Hideo Saitô
出处
期刊:IEEE robotics and automation letters 卷期号:5 (3): 3960-3966 被引量:46
标识
DOI:10.1109/lra.2020.2970946
摘要

Point cloud registration is a key problem for robotics and computer vision communities. This represents estimating a rigid transform which aligns one point cloud to another. Iterative closest point (ICP) is a well-known classical method for this problem, yet it generally achieves high alignment only when the source and template point cloud are mostly pre-aligned. If each point cloud is far away or contains a repeating structure, the registration often fails because of being fallen into a local minimum. Recently, inspired by PointNet, several deep learning-based methods have been developed. PointNetLK is a representative approach, which directly optimizes the distance of aggregated features using gradient method by Jacobian. In this paper, we propose a point cloud registration system based on deep learning: CorsNet. Since CorsNet concatenates the local features with the global features and regresses correspondences between point clouds, not directly pose or aggregated features, more useful information is integrated than the conventional approaches. For comparison, we also developed a novel deep learning approach (DirectNet) that directly regresses the pose between point clouds. Through our experiments, we show that CorsNet achieves higher accuracy than not only the classic ICP method, but also the recently proposed learning-based proposal PointNetLK and DirectNet, including on seen and unseen categories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzswzs完成签到,获得积分10
1秒前
1秒前
ooooo发布了新的文献求助10
1秒前
1秒前
dodo发布了新的文献求助10
1秒前
YH应助凯云采纳,获得50
2秒前
乐乐应助Zirong采纳,获得10
2秒前
李尚泽完成签到,获得积分10
4秒前
菓小柒完成签到 ,获得积分10
5秒前
ding应助LX采纳,获得10
5秒前
机智的龙猫完成签到,获得积分10
5秒前
bkagyin应助别偷我增肌粉采纳,获得10
5秒前
NEUROVASCULAR发布了新的文献求助10
6秒前
6秒前
long完成签到 ,获得积分10
8秒前
Gideon完成签到,获得积分10
8秒前
laoli2022完成签到,获得积分10
8秒前
南星完成签到,获得积分10
9秒前
桐桐应助Lydia采纳,获得10
10秒前
碧蓝香水完成签到,获得积分10
10秒前
10秒前
共享精神应助勋xxx采纳,获得10
11秒前
南星发布了新的文献求助10
12秒前
12秒前
12秒前
precious完成签到,获得积分10
12秒前
汉堡包应助苹果采纳,获得10
12秒前
hahasun完成签到,获得积分10
12秒前
13秒前
田様应助碧蓝香水采纳,获得10
15秒前
Kin_L发布了新的文献求助10
15秒前
猪猪hero应助独特的夏蓉采纳,获得10
16秒前
16秒前
地啦啦啦发布了新的文献求助10
17秒前
小屁孩完成签到,获得积分10
17秒前
LX发布了新的文献求助10
17秒前
17秒前
17秒前
19秒前
19秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961083
求助须知:如何正确求助?哪些是违规求助? 3507362
关于积分的说明 11135622
捐赠科研通 3239835
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803150