CorsNet: 3D Point Cloud Registration by Deep Neural Network

点云 人工智能 计算机科学 迭代最近点 深度学习 计算机视觉 点(几何) 雅可比矩阵与行列式 钥匙(锁) 机器人学 机器人 数学 几何学 应用数学 计算机安全
作者
Akiyoshi Kurobe,Yusuke Sekikawa,Kohta Ishikawa,Hideo Saitô
出处
期刊:IEEE robotics and automation letters 卷期号:5 (3): 3960-3966 被引量:46
标识
DOI:10.1109/lra.2020.2970946
摘要

Point cloud registration is a key problem for robotics and computer vision communities. This represents estimating a rigid transform which aligns one point cloud to another. Iterative closest point (ICP) is a well-known classical method for this problem, yet it generally achieves high alignment only when the source and template point cloud are mostly pre-aligned. If each point cloud is far away or contains a repeating structure, the registration often fails because of being fallen into a local minimum. Recently, inspired by PointNet, several deep learning-based methods have been developed. PointNetLK is a representative approach, which directly optimizes the distance of aggregated features using gradient method by Jacobian. In this paper, we propose a point cloud registration system based on deep learning: CorsNet. Since CorsNet concatenates the local features with the global features and regresses correspondences between point clouds, not directly pose or aggregated features, more useful information is integrated than the conventional approaches. For comparison, we also developed a novel deep learning approach (DirectNet) that directly regresses the pose between point clouds. Through our experiments, we show that CorsNet achieves higher accuracy than not only the classic ICP method, but also the recently proposed learning-based proposal PointNetLK and DirectNet, including on seen and unseen categories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yang完成签到 ,获得积分10
刚刚
ttm完成签到,获得积分10
3秒前
3秒前
4秒前
xuan发布了新的文献求助10
4秒前
7秒前
阿亮完成签到 ,获得积分10
8秒前
Atticus发布了新的文献求助10
8秒前
cy发布了新的文献求助30
9秒前
量子星尘发布了新的文献求助150
10秒前
芝士发布了新的文献求助10
10秒前
香蕉觅云应助HJJHJH采纳,获得10
11秒前
矮小的向雪完成签到 ,获得积分10
11秒前
三腔二囊管完成签到,获得积分10
11秒前
王圈完成签到,获得积分10
11秒前
孤独的乌龟完成签到,获得积分10
12秒前
LUK_完成签到,获得积分10
12秒前
14秒前
冷傲新柔完成签到,获得积分10
15秒前
16秒前
19秒前
科研通AI6应助ayumi采纳,获得10
20秒前
cy关闭了cy文献求助
20秒前
852应助哩蒜呐采纳,获得10
21秒前
NexusExplorer应助我必中采纳,获得10
21秒前
阿崔完成签到,获得积分10
21秒前
冷傲新柔发布了新的文献求助10
21秒前
汉堡包应助qq采纳,获得10
23秒前
23秒前
彭于晏应助辛勤的日记本采纳,获得30
23秒前
安详的夜蕾完成签到,获得积分10
24秒前
Hello应助科研通管家采纳,获得10
24秒前
郭郝应助科研通管家采纳,获得10
24秒前
不配.应助科研通管家采纳,获得150
24秒前
研友_VZG7GZ应助xuan采纳,获得10
24秒前
大个应助科研通管家采纳,获得10
24秒前
量子星尘发布了新的文献求助10
24秒前
pluto应助科研通管家采纳,获得10
24秒前
华仔应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5143039
求助须知:如何正确求助?哪些是违规求助? 4341079
关于积分的说明 13519541
捐赠科研通 4181353
什么是DOI,文献DOI怎么找? 2292877
邀请新用户注册赠送积分活动 1293512
关于科研通互助平台的介绍 1236099