The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis

深度学习 计算机科学 人工智能 数字化病理学 图像处理 分割 数字图像处理 背景(考古学) 管道(软件) 图像分割 领域(数学) 机器学习 模式识别(心理学) 图像(数学) 古生物学 数学 纯数学 生物 程序设计语言
作者
Massimo Salvi,U. Rajendra Acharya,Filippo Molinari,Kristen M. Meiburger
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:128: 104129-104129 被引量:213
标识
DOI:10.1016/j.compbiomed.2020.104129
摘要

Recently, deep learning frameworks have rapidly become the main methodology for analyzing medical images. Due to their powerful learning ability and advantages in dealing with complex patterns, deep learning algorithms are ideal for image analysis challenges, particularly in the field of digital pathology. The variety of image analysis tasks in the context of deep learning includes classification (e.g., healthy vs. cancerous tissue), detection (e.g., lymphocytes and mitosis counting), and segmentation (e.g., nuclei and glands segmentation). The majority of recent machine learning methods in digital pathology have a pre- and/or post-processing stage which is integrated with a deep neural network. These stages, based on traditional image processing methods, are employed to make the subsequent classification, detection, or segmentation problem easier to solve. Several studies have shown how the integration of pre- and post-processing methods within a deep learning pipeline can further increase the model's performance when compared to the network by itself. The aim of this review is to provide an overview on the types of methods that are used within deep learning frameworks either to optimally prepare the input (pre-processing) or to improve the results of the network output (post-processing), focusing on digital pathology image analysis. Many of the techniques presented here, especially the post-processing methods, are not limited to digital pathology but can be extended to almost any image analysis field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻夜香发布了新的文献求助10
刚刚
昊康好完成签到,获得积分10
刚刚
1秒前
yy完成签到,获得积分10
1秒前
2秒前
缓慢天抒完成签到 ,获得积分10
2秒前
科研通AI5应助路之遥兮采纳,获得10
2秒前
爱睡觉的亮亮完成签到,获得积分10
3秒前
圈圈发布了新的文献求助10
3秒前
顾矜应助无聊先知采纳,获得10
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
咕咕咕完成签到,获得积分10
4秒前
经法发布了新的文献求助10
5秒前
晚亭完成签到,获得积分10
5秒前
欲望被鬼举报戚薇求助涉嫌违规
6秒前
yangyang发布了新的文献求助10
6秒前
优雅的琳发布了新的文献求助10
7秒前
时光发布了新的文献求助10
7秒前
yuki完成签到,获得积分10
7秒前
南逸然完成签到,获得积分10
7秒前
7秒前
8秒前
HongJiang发布了新的文献求助10
8秒前
8秒前
筱谭完成签到 ,获得积分10
8秒前
guanze完成签到 ,获得积分10
9秒前
zho关闭了zho文献求助
9秒前
ding应助起承转合采纳,获得10
9秒前
10秒前
蛋炒饭不加蛋完成签到,获得积分10
10秒前
酷炫素完成签到,获得积分10
10秒前
阿金发布了新的文献求助10
11秒前
Jasper应助帅气鹭洋采纳,获得10
11秒前
11秒前
明天更好发布了新的文献求助10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678