The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis

深度学习 计算机科学 人工智能 数字化病理学 图像处理 分割 数字图像处理 背景(考古学) 管道(软件) 图像分割 领域(数学) 机器学习 模式识别(心理学) 图像(数学) 古生物学 程序设计语言 纯数学 生物 数学
作者
Massimo Salvi,U. Rajendra Acharya,Filippo Molinari,Kristen M. Meiburger
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:128: 104129-104129 被引量:213
标识
DOI:10.1016/j.compbiomed.2020.104129
摘要

Recently, deep learning frameworks have rapidly become the main methodology for analyzing medical images. Due to their powerful learning ability and advantages in dealing with complex patterns, deep learning algorithms are ideal for image analysis challenges, particularly in the field of digital pathology. The variety of image analysis tasks in the context of deep learning includes classification (e.g., healthy vs. cancerous tissue), detection (e.g., lymphocytes and mitosis counting), and segmentation (e.g., nuclei and glands segmentation). The majority of recent machine learning methods in digital pathology have a pre- and/or post-processing stage which is integrated with a deep neural network. These stages, based on traditional image processing methods, are employed to make the subsequent classification, detection, or segmentation problem easier to solve. Several studies have shown how the integration of pre- and post-processing methods within a deep learning pipeline can further increase the model's performance when compared to the network by itself. The aim of this review is to provide an overview on the types of methods that are used within deep learning frameworks either to optimally prepare the input (pre-processing) or to improve the results of the network output (post-processing), focusing on digital pathology image analysis. Many of the techniques presented here, especially the post-processing methods, are not limited to digital pathology but can be extended to almost any image analysis field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ddh完成签到,获得积分10
1秒前
不爱做科研完成签到,获得积分10
1秒前
李健应助积极的绫采纳,获得10
1秒前
科研通AI2S应助胥钦凤采纳,获得10
1秒前
星星点点应助胥钦凤采纳,获得10
1秒前
Orange应助晓湫采纳,获得10
2秒前
3秒前
3秒前
fsf完成签到,获得积分10
4秒前
8秒前
yoko发布了新的文献求助10
9秒前
xiaoz完成签到,获得积分10
9秒前
杨枝甘露完成签到 ,获得积分10
11秒前
九黎完成签到 ,获得积分10
12秒前
看看不要钱完成签到,获得积分10
12秒前
繁弱发布了新的文献求助10
12秒前
请你吃折耳根完成签到,获得积分10
13秒前
xzh关注了科研通微信公众号
17秒前
陶一二完成签到,获得积分10
18秒前
blue发布了新的文献求助20
21秒前
21秒前
m0405完成签到,获得积分10
23秒前
23秒前
泥過完成签到 ,获得积分10
24秒前
崔风机发布了新的文献求助20
25秒前
Yvette2024发布了新的文献求助10
27秒前
量子星尘发布了新的文献求助10
29秒前
kingwill应助灿灿采纳,获得20
30秒前
fabian发布了新的文献求助10
30秒前
30秒前
flasher22完成签到,获得积分10
32秒前
32秒前
研友_Zbb4mZ完成签到,获得积分10
36秒前
wch发布了新的文献求助50
37秒前
fabian完成签到,获得积分10
37秒前
FF完成签到,获得积分10
38秒前
flasher22发布了新的文献求助10
38秒前
yoko完成签到,获得积分10
40秒前
小刘小刘完成签到,获得积分10
40秒前
灿灿给灿灿的求助进行了留言
40秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958114
求助须知:如何正确求助?哪些是违规求助? 3504298
关于积分的说明 11117743
捐赠科研通 3235614
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547