The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis

深度学习 计算机科学 人工智能 数字化病理学 图像处理 分割 数字图像处理 背景(考古学) 管道(软件) 图像分割 领域(数学) 机器学习 模式识别(心理学) 图像(数学) 古生物学 程序设计语言 纯数学 生物 数学
作者
Massimo Salvi,U. Rajendra Acharya,Filippo Molinari,Kristen M. Meiburger
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:128: 104129-104129 被引量:213
标识
DOI:10.1016/j.compbiomed.2020.104129
摘要

Recently, deep learning frameworks have rapidly become the main methodology for analyzing medical images. Due to their powerful learning ability and advantages in dealing with complex patterns, deep learning algorithms are ideal for image analysis challenges, particularly in the field of digital pathology. The variety of image analysis tasks in the context of deep learning includes classification (e.g., healthy vs. cancerous tissue), detection (e.g., lymphocytes and mitosis counting), and segmentation (e.g., nuclei and glands segmentation). The majority of recent machine learning methods in digital pathology have a pre- and/or post-processing stage which is integrated with a deep neural network. These stages, based on traditional image processing methods, are employed to make the subsequent classification, detection, or segmentation problem easier to solve. Several studies have shown how the integration of pre- and post-processing methods within a deep learning pipeline can further increase the model's performance when compared to the network by itself. The aim of this review is to provide an overview on the types of methods that are used within deep learning frameworks either to optimally prepare the input (pre-processing) or to improve the results of the network output (post-processing), focusing on digital pathology image analysis. Many of the techniques presented here, especially the post-processing methods, are not limited to digital pathology but can be extended to almost any image analysis field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
热情嘉懿完成签到,获得积分20
3秒前
凹凸先森完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
浮游应助科研通管家采纳,获得10
6秒前
老福贵儿应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
kafeidegushi应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
星期一发布了新的文献求助10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
老福贵儿应助科研通管家采纳,获得10
7秒前
7秒前
青馨花语关注了科研通微信公众号
8秒前
11秒前
华仔应助星期一采纳,获得10
11秒前
12秒前
深情安青应助YY采纳,获得30
12秒前
ZZ完成签到,获得积分10
12秒前
14秒前
14秒前
凌风发布了新的文献求助10
15秒前
16秒前
16秒前
SciGPT应助辣椒油油采纳,获得30
16秒前
17秒前
酷波er应助沉默的板凳采纳,获得10
17秒前
sciscisci完成签到 ,获得积分10
17秒前
17秒前
zyz发布了新的文献求助10
18秒前
20秒前
畑畑发布了新的文献求助30
22秒前
王小小发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553289
求助须知:如何正确求助?哪些是违规求助? 4637819
关于积分的说明 14651261
捐赠科研通 4579708
什么是DOI,文献DOI怎么找? 2511828
邀请新用户注册赠送积分活动 1486770
关于科研通互助平台的介绍 1457694