The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis

深度学习 计算机科学 人工智能 数字化病理学 图像处理 分割 数字图像处理 背景(考古学) 管道(软件) 图像分割 领域(数学) 机器学习 模式识别(心理学) 图像(数学) 古生物学 程序设计语言 纯数学 生物 数学
作者
Massimo Salvi,U. Rajendra Acharya,Filippo Molinari,Kristen M. Meiburger
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:128: 104129-104129 被引量:213
标识
DOI:10.1016/j.compbiomed.2020.104129
摘要

Recently, deep learning frameworks have rapidly become the main methodology for analyzing medical images. Due to their powerful learning ability and advantages in dealing with complex patterns, deep learning algorithms are ideal for image analysis challenges, particularly in the field of digital pathology. The variety of image analysis tasks in the context of deep learning includes classification (e.g., healthy vs. cancerous tissue), detection (e.g., lymphocytes and mitosis counting), and segmentation (e.g., nuclei and glands segmentation). The majority of recent machine learning methods in digital pathology have a pre- and/or post-processing stage which is integrated with a deep neural network. These stages, based on traditional image processing methods, are employed to make the subsequent classification, detection, or segmentation problem easier to solve. Several studies have shown how the integration of pre- and post-processing methods within a deep learning pipeline can further increase the model's performance when compared to the network by itself. The aim of this review is to provide an overview on the types of methods that are used within deep learning frameworks either to optimally prepare the input (pre-processing) or to improve the results of the network output (post-processing), focusing on digital pathology image analysis. Many of the techniques presented here, especially the post-processing methods, are not limited to digital pathology but can be extended to almost any image analysis field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瓜瓜完成签到,获得积分20
刚刚
1秒前
明亮灭绝发布了新的文献求助10
2秒前
2秒前
研友_nEoMy8发布了新的文献求助30
2秒前
2秒前
tRNA完成签到,获得积分10
2秒前
2秒前
lsw发布了新的文献求助10
3秒前
11完成签到,获得积分10
3秒前
机灵的波比完成签到,获得积分20
3秒前
4秒前
bkagyin应助小伏采纳,获得10
4秒前
4秒前
5秒前
情怀应助虚拟的乐松采纳,获得10
5秒前
6秒前
6秒前
6秒前
ShawnJohn发布了新的文献求助10
6秒前
7秒前
麻辣香锅完成签到,获得积分10
7秒前
Khalil发布了新的文献求助10
8秒前
正直的文涛完成签到 ,获得积分10
8秒前
liao_duoduo完成签到,获得积分10
8秒前
ily.发布了新的文献求助10
8秒前
科研通AI6应助吴婉秋采纳,获得10
8秒前
9秒前
10秒前
勤恳青亦发布了新的文献求助10
11秒前
11秒前
研友_VZG7GZ应助研友_nEoMy8采纳,获得10
11秒前
11秒前
小飞发布了新的文献求助10
11秒前
浪里小白龙完成签到,获得积分10
12秒前
12秒前
充电宝应助敏感狗采纳,获得10
13秒前
Lllleen完成签到 ,获得积分10
13秒前
13秒前
科研通AI6应助生动的以南采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468825
求助须知:如何正确求助?哪些是违规求助? 4572157
关于积分的说明 14333943
捐赠科研通 4498964
什么是DOI,文献DOI怎么找? 2464789
邀请新用户注册赠送积分活动 1453376
关于科研通互助平台的介绍 1427939