The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis

深度学习 计算机科学 人工智能 数字化病理学 图像处理 分割 数字图像处理 背景(考古学) 管道(软件) 图像分割 领域(数学) 机器学习 模式识别(心理学) 图像(数学) 古生物学 数学 纯数学 生物 程序设计语言
作者
Massimo Salvi,U. Rajendra Acharya,Filippo Molinari,Kristen M. Meiburger
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:128: 104129-104129 被引量:213
标识
DOI:10.1016/j.compbiomed.2020.104129
摘要

Recently, deep learning frameworks have rapidly become the main methodology for analyzing medical images. Due to their powerful learning ability and advantages in dealing with complex patterns, deep learning algorithms are ideal for image analysis challenges, particularly in the field of digital pathology. The variety of image analysis tasks in the context of deep learning includes classification (e.g., healthy vs. cancerous tissue), detection (e.g., lymphocytes and mitosis counting), and segmentation (e.g., nuclei and glands segmentation). The majority of recent machine learning methods in digital pathology have a pre- and/or post-processing stage which is integrated with a deep neural network. These stages, based on traditional image processing methods, are employed to make the subsequent classification, detection, or segmentation problem easier to solve. Several studies have shown how the integration of pre- and post-processing methods within a deep learning pipeline can further increase the model's performance when compared to the network by itself. The aim of this review is to provide an overview on the types of methods that are used within deep learning frameworks either to optimally prepare the input (pre-processing) or to improve the results of the network output (post-processing), focusing on digital pathology image analysis. Many of the techniques presented here, especially the post-processing methods, are not limited to digital pathology but can be extended to almost any image analysis field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助cjw采纳,获得10
刚刚
刚刚
xiaominza发布了新的文献求助30
刚刚
万能图书馆应助西瓜妹采纳,获得10
刚刚
粗暴的达发布了新的文献求助10
刚刚
科研通AI6应助风中泰坦采纳,获得10
1秒前
1秒前
彭于晏应助长风采纳,获得10
1秒前
依克完成签到,获得积分10
1秒前
1秒前
1秒前
cccat发布了新的文献求助50
2秒前
格林维度关注了科研通微信公众号
2秒前
领导范儿应助忘的澜采纳,获得10
2秒前
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得60
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
挽歌发布了新的文献求助20
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
3秒前
ytzhang0587应助科研通管家采纳,获得20
3秒前
科研通AI6应助hhh采纳,获得10
3秒前
spc68应助科研通管家采纳,获得20
3秒前
Mida应助chenchenchen采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625544
求助须知:如何正确求助?哪些是违规求助? 4711411
关于积分的说明 14955483
捐赠科研通 4779507
什么是DOI,文献DOI怎么找? 2553786
邀请新用户注册赠送积分活动 1515698
关于科研通互助平台的介绍 1475905