Training‐Image Based Geostatistical Inversion Using a Spatial Generative Adversarial Neural Network

反演(地质) 计算机科学 马尔科夫蒙特卡洛 算法 人工神经网络 后验概率 人工智能 反问题 先验概率 贝叶斯概率 数学 地质学 构造盆地 数学分析 古生物学
作者
Eric Laloy,Romain Hérault,Diederik Jacques,Niklas Linde
出处
期刊:Water Resources Research [Wiley]
卷期号:54 (1): 381-406 被引量:210
标识
DOI:10.1002/2017wr022148
摘要

Probabilistic inversion within a multiple-point statistics framework is often computationally prohibitive for high-dimensional problems. To partly address this, we introduce and evaluate a new training-image based inversion approach for complex geologic media. Our approach relies on a deep neural network of the generative adversarial network (GAN) type. After training using a training image (TI), our proposed spatial GAN (SGAN) can quickly generate 2D and 3D unconditional realizations. A key characteristic of our SGAN is that it defines a (very) low-dimensional parameterization, thereby allowing for efficient probabilistic inversion using state-of-the-art Markov chain Monte Carlo (MCMC) methods. In addition, available direct conditioning data can be incorporated within the inversion. Several 2D and 3D categorical TIs are first used to analyze the performance of our SGAN for unconditional geostatistical simulation. Training our deep network can take several hours. After training, realizations containing a few millions of pixels/voxels can be produced in a matter of seconds. This makes it especially useful for simulating many thousands of realizations (e.g., for MCMC inversion) as the relative cost of the training per realization diminishes with the considered number of realizations. Synthetic inversion case studies involving 2D steady-state flow and 3D transient hydraulic tomography with and without direct conditioning data are used to illustrate the effectiveness of our proposed SGAN-based inversion. For the 2D case, the inversion rapidly explores the posterior model distribution. For the 3D case, the inversion recovers model realizations that fit the data close to the target level and visually resemble the true model well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
琼枝完成签到,获得积分10
刚刚
刚刚
大熊猫发布了新的文献求助10
1秒前
sganthem发布了新的文献求助10
1秒前
xxddw完成签到,获得积分10
1秒前
乏味完成签到,获得积分20
2秒前
隐形曼青应助yin采纳,获得10
2秒前
眯眯眼的板栗完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
共享精神应助L~采纳,获得10
3秒前
何博发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
万能图书馆应助柳crystal采纳,获得10
4秒前
sda关注了科研通微信公众号
4秒前
Lumos发布了新的文献求助10
4秒前
陌上花开完成签到,获得积分20
5秒前
Taishan完成签到,获得积分10
6秒前
6秒前
佳佳发布了新的文献求助30
6秒前
6秒前
sganthem完成签到,获得积分10
7秒前
张张发布了新的文献求助10
7秒前
大模型应助平常的蜜粉采纳,获得10
8秒前
8秒前
小王发布了新的文献求助10
8秒前
温柔的沉鱼完成签到,获得积分10
8秒前
小益博士完成签到,获得积分10
8秒前
neal完成签到,获得积分10
8秒前
da1234发布了新的文献求助10
9秒前
xn201120应助m鹿m嘟啦采纳,获得100
9秒前
10秒前
李建行发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
大个应助小刘采纳,获得10
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979392
求助须知:如何正确求助?哪些是违规求助? 3523308
关于积分的说明 11217159
捐赠科研通 3260797
什么是DOI,文献DOI怎么找? 1800211
邀请新用户注册赠送积分活动 878960
科研通“疑难数据库(出版商)”最低求助积分说明 807113