Training‐Image Based Geostatistical Inversion Using a Spatial Generative Adversarial Neural Network

反演(地质) 计算机科学 马尔科夫蒙特卡洛 算法 人工神经网络 后验概率 人工智能 反问题 先验概率 贝叶斯概率 数学 地质学 构造盆地 数学分析 古生物学
作者
Eric Laloy,Romain Hérault,Diederik Jacques,Niklas Linde
出处
期刊:Water Resources Research [Wiley]
卷期号:54 (1): 381-406 被引量:210
标识
DOI:10.1002/2017wr022148
摘要

Probabilistic inversion within a multiple-point statistics framework is often computationally prohibitive for high-dimensional problems. To partly address this, we introduce and evaluate a new training-image based inversion approach for complex geologic media. Our approach relies on a deep neural network of the generative adversarial network (GAN) type. After training using a training image (TI), our proposed spatial GAN (SGAN) can quickly generate 2D and 3D unconditional realizations. A key characteristic of our SGAN is that it defines a (very) low-dimensional parameterization, thereby allowing for efficient probabilistic inversion using state-of-the-art Markov chain Monte Carlo (MCMC) methods. In addition, available direct conditioning data can be incorporated within the inversion. Several 2D and 3D categorical TIs are first used to analyze the performance of our SGAN for unconditional geostatistical simulation. Training our deep network can take several hours. After training, realizations containing a few millions of pixels/voxels can be produced in a matter of seconds. This makes it especially useful for simulating many thousands of realizations (e.g., for MCMC inversion) as the relative cost of the training per realization diminishes with the considered number of realizations. Synthetic inversion case studies involving 2D steady-state flow and 3D transient hydraulic tomography with and without direct conditioning data are used to illustrate the effectiveness of our proposed SGAN-based inversion. For the 2D case, the inversion rapidly explores the posterior model distribution. For the 3D case, the inversion recovers model realizations that fit the data close to the target level and visually resemble the true model well.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
握瑾怀瑜发布了新的文献求助10
2秒前
南风发布了新的文献求助10
2秒前
3秒前
hygge完成签到,获得积分20
3秒前
4秒前
传奇3应助luo采纳,获得10
4秒前
5秒前
sissisue发布了新的文献求助20
5秒前
TY发布了新的文献求助10
5秒前
6秒前
Grayson完成签到,获得积分10
6秒前
缥缈飞双发布了新的文献求助30
7秒前
猴猴发布了新的文献求助10
7秒前
无花果应助佘余采纳,获得10
9秒前
田様应助正直芫采纳,获得10
10秒前
四糸乃完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
董冬冬应助tengfei采纳,获得10
12秒前
12秒前
鹤九完成签到,获得积分10
12秒前
JamesPei应助科研启动采纳,获得10
12秒前
完美世界应助sissisue采纳,获得10
13秒前
hh完成签到,获得积分20
14秒前
15秒前
瞿绝悟发布了新的文献求助30
15秒前
专注采枫完成签到,获得积分10
15秒前
山山而川发布了新的文献求助30
15秒前
16秒前
小小发布了新的文献求助10
17秒前
冲冲完成签到,获得积分20
17秒前
18秒前
充电宝应助foregan采纳,获得10
18秒前
小蘑菇应助kepwake采纳,获得10
18秒前
19秒前
科研通AI6应助娇气的芷巧采纳,获得10
20秒前
shiyin发布了新的文献求助10
20秒前
沉静乾完成签到,获得积分10
20秒前
计划明天炸地球完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652998
求助须知:如何正确求助?哪些是违规求助? 4789083
关于积分的说明 15062620
捐赠科研通 4811651
什么是DOI,文献DOI怎么找? 2574020
邀请新用户注册赠送积分活动 1529772
关于科研通互助平台的介绍 1488418