Training‐Image Based Geostatistical Inversion Using a Spatial Generative Adversarial Neural Network

反演(地质) 计算机科学 马尔科夫蒙特卡洛 算法 人工神经网络 后验概率 人工智能 反问题 先验概率 贝叶斯概率 数学 地质学 古生物学 数学分析 构造盆地
作者
Eric Laloy,Romain Hérault,Diederik Jacques,Niklas Linde
出处
期刊:Water Resources Research [Wiley]
卷期号:54 (1): 381-406 被引量:210
标识
DOI:10.1002/2017wr022148
摘要

Probabilistic inversion within a multiple-point statistics framework is often computationally prohibitive for high-dimensional problems. To partly address this, we introduce and evaluate a new training-image based inversion approach for complex geologic media. Our approach relies on a deep neural network of the generative adversarial network (GAN) type. After training using a training image (TI), our proposed spatial GAN (SGAN) can quickly generate 2D and 3D unconditional realizations. A key characteristic of our SGAN is that it defines a (very) low-dimensional parameterization, thereby allowing for efficient probabilistic inversion using state-of-the-art Markov chain Monte Carlo (MCMC) methods. In addition, available direct conditioning data can be incorporated within the inversion. Several 2D and 3D categorical TIs are first used to analyze the performance of our SGAN for unconditional geostatistical simulation. Training our deep network can take several hours. After training, realizations containing a few millions of pixels/voxels can be produced in a matter of seconds. This makes it especially useful for simulating many thousands of realizations (e.g., for MCMC inversion) as the relative cost of the training per realization diminishes with the considered number of realizations. Synthetic inversion case studies involving 2D steady-state flow and 3D transient hydraulic tomography with and without direct conditioning data are used to illustrate the effectiveness of our proposed SGAN-based inversion. For the 2D case, the inversion rapidly explores the posterior model distribution. For the 3D case, the inversion recovers model realizations that fit the data close to the target level and visually resemble the true model well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我根本没长尾巴完成签到,获得积分10
1秒前
1秒前
2秒前
小灰灰应助牛牛在搬砖采纳,获得10
3秒前
4秒前
超级柠檬完成签到,获得积分10
4秒前
plusweng完成签到 ,获得积分10
4秒前
4秒前
Alan完成签到,获得积分10
4秒前
5秒前
科研通AI6应助可乐要加冰采纳,获得10
5秒前
6秒前
6秒前
今后应助张1采纳,获得10
6秒前
嘎嘣脆的桃儿完成签到,获得积分10
6秒前
好好发布了新的文献求助10
6秒前
lww发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
Stamina678完成签到,获得积分10
9秒前
一二发布了新的文献求助10
9秒前
无极微光应助weddcf采纳,获得20
9秒前
9秒前
9秒前
9秒前
9秒前
6666发布了新的文献求助10
9秒前
sunmcxz完成签到,获得积分10
10秒前
最初发布了新的文献求助10
11秒前
Leo完成签到,获得积分10
11秒前
12秒前
Carlo完成签到,获得积分10
12秒前
lynsan发布了新的文献求助10
12秒前
Anany发布了新的文献求助20
12秒前
13秒前
爆米花应助晓生采纳,获得10
13秒前
田様应助美美桑内采纳,获得10
14秒前
77发布了新的文献求助10
14秒前
HOXXXiii完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5415580
求助须知:如何正确求助?哪些是违规求助? 4532207
关于积分的说明 14132627
捐赠科研通 4447816
什么是DOI,文献DOI怎么找? 2439934
邀请新用户注册赠送积分活动 1431907
关于科研通互助平台的介绍 1409459