Training‐Image Based Geostatistical Inversion Using a Spatial Generative Adversarial Neural Network

反演(地质) 计算机科学 马尔科夫蒙特卡洛 算法 人工神经网络 后验概率 人工智能 反问题 先验概率 贝叶斯概率 数学 地质学 构造盆地 数学分析 古生物学
作者
Eric Laloy,Romain Hérault,Diederik Jacques,Niklas Linde
出处
期刊:Water Resources Research [Wiley]
卷期号:54 (1): 381-406 被引量:210
标识
DOI:10.1002/2017wr022148
摘要

Probabilistic inversion within a multiple-point statistics framework is often computationally prohibitive for high-dimensional problems. To partly address this, we introduce and evaluate a new training-image based inversion approach for complex geologic media. Our approach relies on a deep neural network of the generative adversarial network (GAN) type. After training using a training image (TI), our proposed spatial GAN (SGAN) can quickly generate 2D and 3D unconditional realizations. A key characteristic of our SGAN is that it defines a (very) low-dimensional parameterization, thereby allowing for efficient probabilistic inversion using state-of-the-art Markov chain Monte Carlo (MCMC) methods. In addition, available direct conditioning data can be incorporated within the inversion. Several 2D and 3D categorical TIs are first used to analyze the performance of our SGAN for unconditional geostatistical simulation. Training our deep network can take several hours. After training, realizations containing a few millions of pixels/voxels can be produced in a matter of seconds. This makes it especially useful for simulating many thousands of realizations (e.g., for MCMC inversion) as the relative cost of the training per realization diminishes with the considered number of realizations. Synthetic inversion case studies involving 2D steady-state flow and 3D transient hydraulic tomography with and without direct conditioning data are used to illustrate the effectiveness of our proposed SGAN-based inversion. For the 2D case, the inversion rapidly explores the posterior model distribution. For the 3D case, the inversion recovers model realizations that fit the data close to the target level and visually resemble the true model well.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可可派完成签到,获得积分10
1秒前
0001完成签到,获得积分10
1秒前
汉堡包应助等待水绿采纳,获得10
1秒前
1秒前
2秒前
3秒前
徐立涛完成签到,获得积分10
3秒前
科研通AI2S应助TT采纳,获得10
3秒前
乐乐应助执着的导师采纳,获得10
3秒前
汉堡包应助小张同学采纳,获得10
3秒前
小牛发布了新的文献求助10
7秒前
那年那兔那些事完成签到 ,获得积分10
8秒前
科研通AI6应助pin采纳,获得30
9秒前
9秒前
阿橘完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
BowieHuang应助Rex采纳,获得10
10秒前
11秒前
赘婿应助小牛采纳,获得10
12秒前
DDD完成签到,获得积分10
12秒前
12秒前
虚心的如曼完成签到 ,获得积分10
12秒前
情怀应助黄小米采纳,获得30
13秒前
蚊子完成签到,获得积分10
13秒前
啊啊啊啊完成签到,获得积分10
14秒前
painting发布了新的文献求助10
14秒前
15秒前
15秒前
领导范儿应助葡萄小伊ovo采纳,获得10
15秒前
海盐气泡水完成签到,获得积分10
16秒前
晨晨完成签到,获得积分10
16秒前
19秒前
传奇3应助坚定的又莲采纳,获得10
19秒前
吧KO完成签到,获得积分10
19秒前
雪莉发布了新的文献求助10
20秒前
20秒前
20秒前
20秒前
慕青应助酷炫翠柏采纳,获得30
21秒前
柴yuki完成签到 ,获得积分10
21秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580844
求助须知:如何正确求助?哪些是违规求助? 4665585
关于积分的说明 14756750
捐赠科研通 4607138
什么是DOI,文献DOI怎么找? 2528135
邀请新用户注册赠送积分活动 1497453
关于科研通互助平台的介绍 1466427