Training‐Image Based Geostatistical Inversion Using a Spatial Generative Adversarial Neural Network

反演(地质) 计算机科学 马尔科夫蒙特卡洛 算法 人工神经网络 后验概率 人工智能 反问题 先验概率 贝叶斯概率 数学 地质学 构造盆地 数学分析 古生物学
作者
Eric Laloy,Romain Hérault,Diederik Jacques,Niklas Linde
出处
期刊:Water Resources Research [Wiley]
卷期号:54 (1): 381-406 被引量:210
标识
DOI:10.1002/2017wr022148
摘要

Probabilistic inversion within a multiple-point statistics framework is often computationally prohibitive for high-dimensional problems. To partly address this, we introduce and evaluate a new training-image based inversion approach for complex geologic media. Our approach relies on a deep neural network of the generative adversarial network (GAN) type. After training using a training image (TI), our proposed spatial GAN (SGAN) can quickly generate 2D and 3D unconditional realizations. A key characteristic of our SGAN is that it defines a (very) low-dimensional parameterization, thereby allowing for efficient probabilistic inversion using state-of-the-art Markov chain Monte Carlo (MCMC) methods. In addition, available direct conditioning data can be incorporated within the inversion. Several 2D and 3D categorical TIs are first used to analyze the performance of our SGAN for unconditional geostatistical simulation. Training our deep network can take several hours. After training, realizations containing a few millions of pixels/voxels can be produced in a matter of seconds. This makes it especially useful for simulating many thousands of realizations (e.g., for MCMC inversion) as the relative cost of the training per realization diminishes with the considered number of realizations. Synthetic inversion case studies involving 2D steady-state flow and 3D transient hydraulic tomography with and without direct conditioning data are used to illustrate the effectiveness of our proposed SGAN-based inversion. For the 2D case, the inversion rapidly explores the posterior model distribution. For the 3D case, the inversion recovers model realizations that fit the data close to the target level and visually resemble the true model well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ling完成签到,获得积分10
刚刚
fengmy完成签到,获得积分10
1秒前
肉哥发布了新的文献求助30
1秒前
打打应助123采纳,获得10
3秒前
周钰波关注了科研通微信公众号
4秒前
斯文棒球完成签到 ,获得积分10
5秒前
充电宝应助bb采纳,获得10
5秒前
油菜籽完成签到 ,获得积分10
6秒前
heija完成签到,获得积分10
7秒前
一帆锋顺完成签到,获得积分10
7秒前
shen完成签到,获得积分10
7秒前
7秒前
8秒前
Dearjw1655完成签到,获得积分10
8秒前
Fox完成签到,获得积分0
9秒前
小列巴完成签到,获得积分10
11秒前
12秒前
星星完成签到 ,获得积分10
12秒前
闲人不贤完成签到,获得积分10
13秒前
DyLan发布了新的文献求助10
13秒前
guoguo82完成签到,获得积分10
14秒前
SSS完成签到,获得积分10
14秒前
十九岁的时差完成签到,获得积分10
15秒前
123发布了新的文献求助10
15秒前
WGOIST发布了新的文献求助10
15秒前
摇一摇完成签到,获得积分20
15秒前
陌上花开完成签到,获得积分0
17秒前
17秒前
19秒前
19秒前
东东q东东完成签到,获得积分10
20秒前
目土土发布了新的文献求助10
20秒前
简单的尔风完成签到 ,获得积分10
20秒前
大个应助kuny采纳,获得10
21秒前
wanci应助默默书竹采纳,获得30
21秒前
宅心仁厚完成签到 ,获得积分10
23秒前
123完成签到,获得积分10
23秒前
善良青筠发布了新的文献求助10
26秒前
Henry给王多肉的求助进行了留言
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137155
求助须知:如何正确求助?哪些是违规求助? 2788182
关于积分的说明 7784837
捐赠科研通 2444146
什么是DOI,文献DOI怎么找? 1299822
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011