Identification of a Novel 4-gene Diagnostic Model for Atrial Fibrillation Risk Based on Integrated Analysis Across Independent Data Sets

心房颤动 计算生物学 基因 鉴定(生物学) 生物信息学 小RNA 心律失常 生物 医学 内科学 遗传学 植物
作者
Pei Zhang,Qiang Miao,Xiao Wang,Yong Zhang,Yinglong Hou
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science]
卷期号:25 (2): 229-240 被引量:4
标识
DOI:10.2174/1386207324666210121103304
摘要

Atrial fibrillation (AF) is the most common persistent arrhythmia and an important factor leading to cardiovascular morbidity and mortality. Several key genes and diagnostic markers have been discovered with the development of advanced modern molecular biology techniques, but the etiology and pathogenesis of AF remained unknown.In this study, three-chip-seq data sets and an RNA-seq data set were integrated as a comprehensive network for pathway analysis of the biological functions of related genes in AF, hoping to provide a better understanding of the etiology and pathogenesis of AF.Differential co-expression analysis identified 360 genes with specific expression in AF, and functional enrichment analysis further revealed that these genes were significantly correlated with focal expression (p <0.01), autophagy (p <0.01), and thyroid cancer. In addition, Af-specific proteinprotein interaction (PPI) networks were constructed based on AF-specific expression genes. Network topology analysis identified PLEKHA7, YWHAQ, PPP1CB, WDR1, AKT1, IGF1R, CANX, MAPK1, SRPK2 and SRSF10 genes as hub genes of the networks, and they were considered as potential biomarkers of AF because they were found to participate in the development of AF through Oocyte meiosis and focal expression. Finally, a diagnostic model for AF established with a support vector machine (SVM) demonstrated excellent predictive performance in internal and external data sets (AUC>0.9) and different platform data sets (mean AUC>0.75).Finally, a diagnostic model for AF was established, thus showing its potential in the early identification and prediction of AF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助机智的含蕾采纳,获得10
2秒前
潇洒的如松完成签到,获得积分10
3秒前
飞天猫完成签到,获得积分10
6秒前
松谦完成签到,获得积分20
6秒前
嗯嗯嗯完成签到 ,获得积分10
9秒前
9秒前
圆圆的分子球完成签到 ,获得积分10
10秒前
13秒前
14秒前
西瓜完成签到 ,获得积分10
21秒前
fifteen发布了新的文献求助10
22秒前
香蕉觅云应助墨竹采纳,获得10
22秒前
kuo发布了新的文献求助10
25秒前
26秒前
carrie完成签到,获得积分10
28秒前
潇洒哥发布了新的文献求助10
28秒前
FashionBoy应助阔达的曼凡采纳,获得10
28秒前
31秒前
田様应助歪哔巴布采纳,获得10
33秒前
标致冬日完成签到,获得积分10
36秒前
37秒前
XS123发布了新的文献求助10
37秒前
叶知秋完成签到,获得积分10
37秒前
桐桐应助雯雯采纳,获得10
38秒前
完美世界应助活泼学生采纳,获得10
40秒前
luchen发布了新的文献求助10
41秒前
41秒前
sam完成签到,获得积分20
41秒前
饱满翠绿完成签到,获得积分10
42秒前
sdysdbd发布了新的文献求助30
42秒前
43秒前
纪复天完成签到,获得积分10
44秒前
歪哔巴布发布了新的文献求助10
48秒前
adam完成签到,获得积分10
48秒前
今后应助科研通管家采纳,获得10
49秒前
咖啡豆应助科研通管家采纳,获得10
49秒前
49秒前
星辰大海应助科研通管家采纳,获得10
49秒前
JamesPei应助科研通管家采纳,获得10
49秒前
小蘑菇应助科研通管家采纳,获得10
49秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140361
求助须知:如何正确求助?哪些是违规求助? 2791116
关于积分的说明 7798129
捐赠科研通 2447583
什么是DOI,文献DOI怎么找? 1301980
科研通“疑难数据库(出版商)”最低求助积分说明 626354
版权声明 601194