Selection of efficient degradation features for rolling element bearing prognosis using Gaussian Process Regression method

振动 克里金 熵(时间箭头) 状态监测 方位(导航) 样本熵 计算机科学 工程类 模式识别(心理学) 人工智能 算法 机器学习 声学 量子力学 电气工程 物理
作者
Prem Shankar Kumar,Lakshmi Annamalai Kumaraswamidhas,S.K. Laha
出处
期刊:Isa Transactions [Elsevier]
卷期号:112: 386-401 被引量:22
标识
DOI:10.1016/j.isatra.2020.12.020
摘要

Rolling Element Bearings are one of the most ubiquitous machine elements used in various machineries in the manufacturing industry. Prognosis and estimation of residual life of rolling element bearing are very important for efficient implementation of health monitoring and condition-based maintenance. In this paper, a rolling element bearing fault or degradation trend prediction is modeled using Gaussian Process Regression (GPR) method. Various vibration features based on signal complexity, namely Shannon entropy, permutation entropy, and approximate entropy are estimated to obtain the bearing degradation trend. When fault or degradation occurs in rolling element bearing, there is a subtle change in the dynamics of the system and subsequently, there are changes in the features extracted from the vibration signal. In this paper, a comparative analysis of various kernel functions of the GPR model is carried out using accuracy-based metrics. In addition, the combination of goodness of metric (monotonicity (Mon), robustness (Rob), and prognosability (Pro)), namely hybrid metric, is proposed to select the efficient bearing degradation trend of features. Further, the GPR at ARD exponential kernel has been employed to make the prognosis of degradation trend in bearings with a 95% confidence interval (CI). The proposed methodology is validated through a mathematical model of the simulated vibration signal. Finally, from the simulated and experimental data, it is demonstrated that the entropy features have better performance than the statistical features. • Entropy features (Shannon entropy, PE and ApEn ) is proposed to obtain the degradation trend or fault in bearing. • A health indicator based on the hybrid metric is proposed for bearing degradation feature selection. • GPR technique has been used to prediction of bearing degradation trend with 95% CI. • The proposed method validated with simulations of the vibration signal. • Performance of GPR prediction efficiently estimated by accuracy based metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丫丫关注了科研通微信公众号
刚刚
元谷雪发布了新的文献求助10
1秒前
迷路海蓝应助99采纳,获得50
1秒前
2秒前
尹5完成签到,获得积分10
2秒前
可爱的函函应助水中鱼采纳,获得30
3秒前
3秒前
3秒前
在水一方应助hjkk采纳,获得30
4秒前
恶恶么v发布了新的文献求助10
4秒前
英姑应助demo1采纳,获得10
5秒前
5秒前
研究生完成签到 ,获得积分10
6秒前
此时天完成签到,获得积分10
6秒前
瑾风阳发布了新的文献求助10
8秒前
8秒前
等待航空发布了新的文献求助30
9秒前
zyyyy完成签到,获得积分10
10秒前
大个应助文献小白采纳,获得10
10秒前
兮豫完成签到 ,获得积分10
10秒前
华仔应助欣喜安萱采纳,获得10
10秒前
小思完成签到 ,获得积分10
11秒前
花生了什么树完成签到 ,获得积分10
11秒前
雪芜发布了新的文献求助10
11秒前
小马甲应助mmol采纳,获得10
12秒前
haizz发布了新的文献求助10
12秒前
Nanaming完成签到 ,获得积分10
12秒前
陌路孤星发布了新的文献求助10
12秒前
14秒前
14秒前
14秒前
liyutong完成签到 ,获得积分20
15秒前
扶风阁主完成签到,获得积分10
15秒前
汉堡包应助Freya采纳,获得10
16秒前
领导范儿应助独白采纳,获得10
16秒前
16秒前
17秒前
扳手已就位完成签到,获得积分10
17秒前
17秒前
Yuxuan发布了新的文献求助10
18秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124336
求助须知:如何正确求助?哪些是违规求助? 2774637
关于积分的说明 7723368
捐赠科研通 2430117
什么是DOI,文献DOI怎么找? 1290937
科研通“疑难数据库(出版商)”最低求助积分说明 621972
版权声明 600297