Selection of efficient degradation features for rolling element bearing prognosis using Gaussian Process Regression method

振动 克里金 熵(时间箭头) 状态监测 方位(导航) 样本熵 计算机科学 工程类 模式识别(心理学) 人工智能 算法 机器学习 声学 物理 量子力学 电气工程
作者
Prem Shankar Kumar,Lakshmi Annamalai Kumaraswamidhas,S.K. Laha
出处
期刊:Isa Transactions [Elsevier BV]
卷期号:112: 386-401 被引量:22
标识
DOI:10.1016/j.isatra.2020.12.020
摘要

Rolling Element Bearings are one of the most ubiquitous machine elements used in various machineries in the manufacturing industry. Prognosis and estimation of residual life of rolling element bearing are very important for efficient implementation of health monitoring and condition-based maintenance. In this paper, a rolling element bearing fault or degradation trend prediction is modeled using Gaussian Process Regression (GPR) method. Various vibration features based on signal complexity, namely Shannon entropy, permutation entropy, and approximate entropy are estimated to obtain the bearing degradation trend. When fault or degradation occurs in rolling element bearing, there is a subtle change in the dynamics of the system and subsequently, there are changes in the features extracted from the vibration signal. In this paper, a comparative analysis of various kernel functions of the GPR model is carried out using accuracy-based metrics. In addition, the combination of goodness of metric (monotonicity (Mon), robustness (Rob), and prognosability (Pro)), namely hybrid metric, is proposed to select the efficient bearing degradation trend of features. Further, the GPR at ARD exponential kernel has been employed to make the prognosis of degradation trend in bearings with a 95% confidence interval (CI). The proposed methodology is validated through a mathematical model of the simulated vibration signal. Finally, from the simulated and experimental data, it is demonstrated that the entropy features have better performance than the statistical features. • Entropy features (Shannon entropy, PE and ApEn ) is proposed to obtain the degradation trend or fault in bearing. • A health indicator based on the hybrid metric is proposed for bearing degradation feature selection. • GPR technique has been used to prediction of bearing degradation trend with 95% CI. • The proposed method validated with simulations of the vibration signal. • Performance of GPR prediction efficiently estimated by accuracy based metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NSJN2022完成签到,获得积分20
1秒前
zf发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
小花完成签到 ,获得积分20
3秒前
5秒前
觅柔发布了新的文献求助10
6秒前
壮观的擎发布了新的文献求助10
6秒前
ineout完成签到,获得积分10
6秒前
Georgechan发布了新的文献求助30
6秒前
bkagyin应助alansk采纳,获得10
9秒前
孤独妙海发布了新的文献求助10
10秒前
10秒前
武思远完成签到,获得积分10
10秒前
张雯思发布了新的文献求助10
11秒前
luckyhuuu发布了新的文献求助10
13秒前
Janee7完成签到,获得积分10
14秒前
王国林完成签到,获得积分10
16秒前
16秒前
花无双完成签到,获得积分0
18秒前
CipherSage应助sherryyijia采纳,获得10
19秒前
王染墨发布了新的文献求助10
20秒前
情怀应助JF123_采纳,获得10
21秒前
23秒前
李健应助丫丫采纳,获得10
23秒前
23秒前
lqs完成签到 ,获得积分10
24秒前
24秒前
周雪娇发布了新的文献求助10
25秒前
25秒前
佛人世间完成签到 ,获得积分10
25秒前
科研通AI2S应助aike采纳,获得10
25秒前
25秒前
26秒前
研究牛牛发布了新的文献求助10
28秒前
28秒前
张雯思发布了新的文献求助10
29秒前
Ch185完成签到,获得积分10
29秒前
云起天山发布了新的文献求助10
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999649
求助须知:如何正确求助?哪些是违规求助? 3539089
关于积分的说明 11275836
捐赠科研通 3277841
什么是DOI,文献DOI怎么找? 1807756
邀请新用户注册赠送积分活动 884129
科研通“疑难数据库(出版商)”最低求助积分说明 810142