阿达布思
机器学习
人工智能
最佳线性无偏预测
支持向量机
随机森林
选择(遗传算法)
计算机科学
特征选择
基因组选择
统计
生物
数学
遗传学
基因型
基因
单核苷酸多态性
作者
Mang Liang,Jian Miao,Xiaoqiao Wang,Tianpeng Chang,Bingxing An,Xinghai Duan,Lingyang Xu,Xue Gao,Lupei Zhang,Junya Li,Huijiang Gao
摘要
Abstract Genomic selection (GS) using the whole‐genome molecular makers to predict genomic estimated breeding values (GEBVs) is revolutionizing the livestock and plant breeding. Seeking out novel strategies with higher prediction accuracy for GS has been the ultimate goal of breeders. With the rapid development of artificial intelligence, machine learning algorithms were applied to estimate the GEBVs increasingly. Although some machine learning methods have better performance in phenotype prediction, there is still considerable room for improvement. In this study, we applied an ensemble‐learning algorithm, Adaboost.RT, which integrated support vector regression (SVR), kernel ridge regression (KRR) and random forest (RF), to predict genomic breeding values of three economic traits (carcass weight, live weight, and eye muscle area) in Chinese Simmental beef cattle. Predictive accuracy measured as the Pearson correlation between the corrected phenotypes and predicted GEBVs. Moreover, we compared the reliability of SVR, KRR, RF, Adaboost.RT and GBLUP methods. The result showed that machine learning methods outperformed GBLUP, and the average improvement of four machine learning methods over the GBLUP was 12.8%, 14.9%, 5.4% and 14.4%, respectively. Among the four machine learning methods, the reliability of Adaboost.RT was comparable to KRR with higher stability. We therefore believe that the Adaboost.RT algorithm is a reliable and efficient method for GS.
科研通智能强力驱动
Strongly Powered by AbleSci AI