Gesture Recognition in Robotic Surgery: A Review

计算机科学 判别式 手势 人工智能 手势识别 解析 特征(语言学) 分割 机器学习 领域(数学) 特征提取 开放式研究 模式识别(心理学) 哲学 纯数学 万维网 语言学 数学
作者
Beatrice van Amsterdam,Matthew J. Clarkson,Danail Stoyanov
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:68 (6): 2021-2035 被引量:98
标识
DOI:10.1109/tbme.2021.3054828
摘要

Objective: Surgical activity recognition is a fundamental step in computer-assisted interventions. This paper reviews the state-of-the-art in methods for automatic recognition of fine-grained gestures in robotic surgery focusing on recent data-driven approaches and outlines the open questions and future research directions. Methods: An article search was performed on 5 bibliographic databases with the following search terms: robotic, robot-assisted, JIGSAWS, surgery, surgical, gesture, fine-grained, surgeme, action, trajectory, segmentation, recognition, parsing. Selected articles were classified based on the level of supervision required for training and divided into different groups representing major frameworks for time series analysis and data modelling. Results: A total of 52 articles were reviewed. The research field is showing rapid expansion, with the majority of articles published in the last 4 years. Deep-learning-based temporal models with discriminative feature extraction and multi-modal data integration have demonstrated promising results on small surgical datasets. Currently, unsupervised methods perform significantly less well than the supervised approaches. Conclusion: The development of large and diverse open-source datasets of annotated demonstrations is essential for development and validation of robust solutions for surgical gesture recognition. While new strategies for discriminative feature extraction and knowledge transfer, or unsupervised and semi-supervised approaches, can mitigate the need for data and labels, they have not yet been demonstrated to achieve comparable performance. Important future research directions include detection and forecast of gesture-specific errors and anomalies. Significance: This paper is a comprehensive and structured analysis of surgical gesture recognition methods aiming to summarize the status of this rapidly evolving field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助111采纳,获得10
刚刚
Hello应助标致白卉采纳,获得10
2秒前
SInyi完成签到,获得积分10
2秒前
斯文败类应助Macong_44713采纳,获得10
2秒前
3秒前
3秒前
NZH发布了新的文献求助10
4秒前
董咚咚完成签到,获得积分10
4秒前
jwx应助灵活又幸福的胖采纳,获得10
5秒前
Daisy完成签到,获得积分10
5秒前
kkkkkk完成签到,获得积分10
6秒前
爱学习的媛子完成签到,获得积分20
6秒前
6秒前
6秒前
liangzhy发布了新的文献求助10
7秒前
爱静静应助科研达人采纳,获得10
7秒前
8秒前
吕广霞发布了新的文献求助10
8秒前
8秒前
沸羊羊完成签到,获得积分10
8秒前
赫连一斩完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
爆米花应助tsngl采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
悠咪完成签到,获得积分20
9秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
wanci应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
yin应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得30
10秒前
maohui完成签到,获得积分10
10秒前
10秒前
科目三应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553842
求助须知:如何正确求助?哪些是违规求助? 3129593
关于积分的说明 9383508
捐赠科研通 2828757
什么是DOI,文献DOI怎么找? 1555168
邀请新用户注册赠送积分活动 725867
科研通“疑难数据库(出版商)”最低求助积分说明 715320