Mid-infrared spectroscopy as process analytical technology tool for estimation of THC and CBD content in Cannabis flowers and extracts

大麻酚 设计质量 化学计量学 大麻 过程分析技术 质量(理念) 代表性启发 生化工程 工艺工程 化学 计算机科学 数学 工程类 色谱法 统计 物理 运营管理 物理化学 在制品 心理学 精神科 粒径 量子力学
作者
Nikola Geškovski,Gjoše Stefkov,Olga Gigopulu,Stefan Stefov,Christian W. Huck,Petre Makreski
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:251: 119422-119422 被引量:24
标识
DOI:10.1016/j.saa.2020.119422
摘要

Tetrahydrocannabinol (THC) and cannabidiol (CBD) are the most notable Cannabis components with pharmacological activity and their content in the plant flowers and extracts are considered as critical quality parameters. The new Medical Cannabis industry needs to adopt the quality standards of the pharmaceutical industry, however, the variability of phytocannabinoids content in the plant material often exerts an issue in the inconsistency of the finished product quality parameters. Sampling problems and sample representativeness is a major limitation in the end-point testing, particularly when the expected variation of the product quality parameters is high. Therefore, there is an obvious need for the introduction of Process Analytical Technology (PAT) for continuous monitoring of the critical quality parameters throughout the production processes. Infrared spectroscopy is a promising analytical technique that is consistent with the PAT requirements and its implementation depends on the advances in instrumentation and chemometrics that will facilitate the qualitative and quantitative aspects of the technique. Our present work aims in highlighting the potential of mid-infrared (MIR) spectroscopy as PAT in the quantification of the main phytocannabinoids (THC and CBD), considered as critical quality/material parameters in the production of Cannabis plant and extract. A detailed assignment of the bands related to the molecules of interest (THC, CBD) was performed, the spectral features of the decarboxylation of native flowers were identified, and the specified bands for the acid forms (THCA, CBDA) were assigned and thoroughly explained. Further, multivariate models were constructed for the prediction of both THC and CBD content in extract and flower samples from various origins, and their prediction ability was tested on a separate sample set. Savitskzy-Golay smoothing and the second derivative of the native MIR spectra (1800–400 cm−1 region) resulted in best-fit parameters. The PLS models presented satisfactory R2Y and RMSEP of 0.95 and 3.79% for THC, 0.99 and 1.44% for CBD in the Cannabis extract samples, respectively. Similar statistical indicators were noted for the Partial least-squares (PLS) models for THC and CBD prediction of decarboxylated Cannabis flowers (R2Y and RMSEP were 0.99 and 2.32% for THC, 0.99 and 1.33% for CBD respectively). The VIP plots of all models demonstrated that the THC and CBD distinctive band regions bared the highest importance for predicting the content of the molecules of interest in the respected PLS models. The complexity of the sample (plant tissue or plant extract), the variability of the samples regarding their origin and horticultural maturity, as well as the non-uniformity of the plant material and the flower-ATR crystal contact (in the case of Cannabis flowers) were governing the accuracy descriptors. Taking into account the presented results, ATR-MIR should be considered as a promising PAT tool for THC and CBD content estimation, in terms of critical material and quality parameters for Cannabis flowers and extracts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
解你所忧完成签到 ,获得积分10
1秒前
勤奋完成签到 ,获得积分10
1秒前
奋斗的石头完成签到,获得积分10
2秒前
发发旦旦完成签到,获得积分10
2秒前
修兮完成签到 ,获得积分10
3秒前
共享精神应助HanZhang采纳,获得10
4秒前
5秒前
chang完成签到 ,获得积分10
5秒前
起点完成签到,获得积分10
6秒前
学术Bond完成签到,获得积分10
6秒前
8秒前
橘子完成签到,获得积分10
8秒前
DiJia完成签到 ,获得积分10
9秒前
平常紫安完成签到 ,获得积分10
9秒前
LIJIngcan完成签到 ,获得积分10
10秒前
djdh完成签到 ,获得积分10
11秒前
Lee完成签到 ,获得积分10
11秒前
兔BF完成签到,获得积分10
11秒前
烂漫的蜡烛完成签到 ,获得积分10
12秒前
SciGPT应助蝈蝈采纳,获得10
12秒前
傲慢与偏见完成签到,获得积分10
14秒前
ywindm完成签到 ,获得积分10
15秒前
大气白翠完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
RR完成签到 ,获得积分10
16秒前
16秒前
沉静的乘风完成签到,获得积分10
17秒前
淳于白凝完成签到,获得积分0
18秒前
laa完成签到,获得积分10
18秒前
春风送暖完成签到,获得积分10
18秒前
清修发布了新的文献求助10
19秒前
WWWUBING完成签到,获得积分10
20秒前
3080完成签到 ,获得积分10
21秒前
Titi完成签到 ,获得积分10
21秒前
无止完成签到,获得积分10
22秒前
22秒前
chenying完成签到 ,获得积分0
24秒前
wei完成签到,获得积分10
25秒前
zhangj696完成签到,获得积分10
27秒前
科研助理发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482688
求助须知:如何正确求助?哪些是违规求助? 4583423
关于积分的说明 14389513
捐赠科研通 4512664
什么是DOI,文献DOI怎么找? 2473166
邀请新用户注册赠送积分活动 1459251
关于科研通互助平台的介绍 1432861