Mid-infrared spectroscopy as process analytical technology tool for estimation of THC and CBD content in Cannabis flowers and extracts

大麻酚 设计质量 化学计量学 大麻 过程分析技术 质量(理念) 代表性启发 生化工程 工艺工程 化学 计算机科学 数学 工程类 色谱法 统计 物理 运营管理 物理化学 在制品 心理学 精神科 粒径 量子力学
作者
Nikola Geškovski,Gjoše Stefkov,Olga Gigopulu,Stefan Stefov,Christian W. Huck,Petre Makreski
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:251: 119422-119422 被引量:24
标识
DOI:10.1016/j.saa.2020.119422
摘要

Tetrahydrocannabinol (THC) and cannabidiol (CBD) are the most notable Cannabis components with pharmacological activity and their content in the plant flowers and extracts are considered as critical quality parameters. The new Medical Cannabis industry needs to adopt the quality standards of the pharmaceutical industry, however, the variability of phytocannabinoids content in the plant material often exerts an issue in the inconsistency of the finished product quality parameters. Sampling problems and sample representativeness is a major limitation in the end-point testing, particularly when the expected variation of the product quality parameters is high. Therefore, there is an obvious need for the introduction of Process Analytical Technology (PAT) for continuous monitoring of the critical quality parameters throughout the production processes. Infrared spectroscopy is a promising analytical technique that is consistent with the PAT requirements and its implementation depends on the advances in instrumentation and chemometrics that will facilitate the qualitative and quantitative aspects of the technique. Our present work aims in highlighting the potential of mid-infrared (MIR) spectroscopy as PAT in the quantification of the main phytocannabinoids (THC and CBD), considered as critical quality/material parameters in the production of Cannabis plant and extract. A detailed assignment of the bands related to the molecules of interest (THC, CBD) was performed, the spectral features of the decarboxylation of native flowers were identified, and the specified bands for the acid forms (THCA, CBDA) were assigned and thoroughly explained. Further, multivariate models were constructed for the prediction of both THC and CBD content in extract and flower samples from various origins, and their prediction ability was tested on a separate sample set. Savitskzy-Golay smoothing and the second derivative of the native MIR spectra (1800–400 cm−1 region) resulted in best-fit parameters. The PLS models presented satisfactory R2Y and RMSEP of 0.95 and 3.79% for THC, 0.99 and 1.44% for CBD in the Cannabis extract samples, respectively. Similar statistical indicators were noted for the Partial least-squares (PLS) models for THC and CBD prediction of decarboxylated Cannabis flowers (R2Y and RMSEP were 0.99 and 2.32% for THC, 0.99 and 1.33% for CBD respectively). The VIP plots of all models demonstrated that the THC and CBD distinctive band regions bared the highest importance for predicting the content of the molecules of interest in the respected PLS models. The complexity of the sample (plant tissue or plant extract), the variability of the samples regarding their origin and horticultural maturity, as well as the non-uniformity of the plant material and the flower-ATR crystal contact (in the case of Cannabis flowers) were governing the accuracy descriptors. Taking into account the presented results, ATR-MIR should be considered as a promising PAT tool for THC and CBD content estimation, in terms of critical material and quality parameters for Cannabis flowers and extracts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lllllll完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
Jasper应助Sylvia采纳,获得10
2秒前
含糊的玲发布了新的文献求助10
3秒前
乐乐应助pbuu采纳,获得10
4秒前
4秒前
4秒前
4秒前
orixero应助MG采纳,获得10
4秒前
xiaobuding完成签到,获得积分10
4秒前
5秒前
郜连虎完成签到,获得积分10
5秒前
能干大树完成签到,获得积分10
5秒前
PeterDeng完成签到,获得积分10
5秒前
Yuzu应助EatFish采纳,获得10
5秒前
6秒前
乐乐应助Bowen Chu采纳,获得10
6秒前
黄同学发布了新的文献求助10
6秒前
科研狗完成签到,获得积分10
6秒前
科研通AI6应助王小小采纳,获得10
7秒前
7秒前
8秒前
8秒前
李林完成签到,获得积分10
8秒前
8秒前
warte完成签到,获得积分10
8秒前
chenct002完成签到,获得积分10
9秒前
852应助jack1511采纳,获得10
10秒前
10秒前
WY发布了新的文献求助30
10秒前
Twonej应助龘龘采纳,获得50
10秒前
李湘发布了新的文献求助10
11秒前
11秒前
巴比龙发布了新的文献求助10
11秒前
xiaobuding发布了新的文献求助10
11秒前
张卓情完成签到,获得积分10
12秒前
12秒前
岳广莹完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629915
求助须知:如何正确求助?哪些是违规求助? 4721053
关于积分的说明 14971551
捐赠科研通 4787872
什么是DOI,文献DOI怎么找? 2556612
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478302