CT texture analysis of vulnerable plaques on optical coherence tomography

医学 光学相干层析成像 无线电技术 易损斑块 放射科 核医学 病理
作者
Qian Chen,Tao Pan,Xindao Yin,Hui Xu,Xiaofei Gao,Xinwei Tao,Leilei Zhou,Guanghui Xie,Xiangquan Kong,Xiaoyu Huang,Nuonan Gao,Junjie Zhang,Long Jiang Zhang
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:136: 109551-109551 被引量:18
标识
DOI:10.1016/j.ejrad.2021.109551
摘要

Purpose To explore whether CT texture analysis can identify thin-cap fibroatheroma (TCFA) determined by optical coherence tomography (OCT). Methods Thirty-three patients with 43 lesions who underwent both CCTA and OCT within 3 months were retrospectively included. 12 conventional CT-derived plaque features, fat attenuation index (FAI) and 1691 plaque radiomics features were extracted to discriminate TCFA lesions and non-TCFA lesions determined by OCT. Minimum redundancy and maximum relevance (mRMR) method was employed to select radiomics features. The top ranked features were used to construct a forward stepwise logistic radiomics model. The performance of radiomics model was compared with the conventional high-risk plaque (HRP) features model and FAI model for the detection of TCFA. Results Out of 1691 features, 35 features were significantly different between TCFA and non-TCFA lesions (all p<0.05) while only low attenuation plaque (LAP) was more frequent in TCFA group (p = 0.004). There was no significant difference in FAI between TCFA and non-TCFA lesions. Five features were ultimately integrated into the radiomics model after mRMR analysis, which demonstrated significantly higher AUC for the detection of TCFA (0.952; 95 % CI: 0.897–1.000) compared with the conventional HRP features model (0.621; 95 % CI: 0.469−0.773, p < 0.001) and FAI model (0.52; 95 % CI: 0.33−0.70, p < 0.001). Conclusion CT texture analysis performs better at identifying TCFA determined by OCT compared with conventional CT-derived plaque parameters and FAI. Texture analysis may serve as a potential non-invasive method of evaluating vulnerable plaque.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助太阳雨采纳,获得10
1秒前
黄康完成签到,获得积分10
1秒前
白色大鸟完成签到 ,获得积分10
1秒前
1秒前
xnhz完成签到,获得积分10
1秒前
科研通AI6.1应助呵呵采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
2秒前
杰尼龟的鱼完成签到 ,获得积分10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
小二郎应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
满意大门完成签到,获得积分10
3秒前
zhonglv7应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
3秒前
坚定晓兰应助科研通管家采纳,获得10
3秒前
grace2026应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
zhonglv7应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
坚定晓兰应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
ys完成签到,获得积分10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766752
求助须知:如何正确求助?哪些是违规求助? 5566757
关于积分的说明 15413615
捐赠科研通 4900873
什么是DOI,文献DOI怎么找? 2636748
邀请新用户注册赠送积分活动 1584920
关于科研通互助平台的介绍 1540170