清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning for microbial identification and antimicrobial susceptibility testing on MALDI-TOF mass spectra: a systematic review

鉴定(生物学) 抗菌剂 计算生物学 微生物学 质谱 医学 生物 质谱法 色谱法 化学 生态学
作者
Caroline Weis,Catherine R. Jutzeler,Karsten Borgwardt
出处
期刊:Clinical Microbiology and Infection [Elsevier]
卷期号:26 (10): 1310-1317 被引量:149
标识
DOI:10.1016/j.cmi.2020.03.014
摘要

The matrix assisted laser desorption/ionization and time-of-flight mass spectrometry (MALDI-TOF MS) technology has revolutionized the field of microbiology by facilitating precise and rapid species identification. Recently, machine learning techniques have been leveraged to maximally exploit the information contained in MALDI-TOF MS, with the ultimate goal to refine species identification and streamline antimicrobial resistance determination.The aim was to systematically review and evaluate studies employing machine learning for the analysis of MALDI-TOF mass spectra.Using PubMed/Medline, Scopus and Web of Science, we searched the existing literature for machine learning-supported applications of MALDI-TOF mass spectra for microbial species and antimicrobial susceptibility identification.Original research studies using machine learning to exploit MALDI-TOF mass spectra for microbial specie and antimicrobial susceptibility identification were included. Studies focusing on single proteins and peptides, case studies and review articles were excluded.A systematic review according to the PRISMA guidelines was performed and a quality assessment of the machine learning models conducted.From the 36 studies that met our inclusion criteria, 27 employed machine learning for species identification and nine for antimicrobial susceptibility testing. Support Vector Machines, Genetic Algorithms, Artificial Neural Networks and Quick Classifiers were the most frequently used machine learning algorithms. The quality of the studies ranged between poor and very good. The majority of the studies reported how to interpret the predictors (88.89%) and suggested possible clinical applications of the developed algorithm (100%), but only four studies (11.11%) validated machine learning algorithms on external datasets.A growing number of studies utilize machine learning to optimize the analysis of MALDI-TOF mass spectra. This review, however, demonstrates that there are certain shortcomings of current machine learning-supported approaches that have to be addressed to make them widely available and incorporated them in the clinical routine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yxq完成签到 ,获得积分10
11秒前
xkhxh完成签到 ,获得积分10
13秒前
勤恳的雪卉完成签到,获得积分0
16秒前
泓凯骏完成签到 ,获得积分10
21秒前
FelixWu完成签到 ,获得积分10
29秒前
wenbinvan完成签到,获得积分0
43秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
WXM完成签到 ,获得积分10
47秒前
刘焱炎发布了新的文献求助20
50秒前
kenchilie完成签到 ,获得积分10
53秒前
平常山河完成签到 ,获得积分10
57秒前
稻子完成签到 ,获得积分10
1分钟前
诺亚方舟哇哈哈完成签到 ,获得积分0
1分钟前
午后狂睡完成签到 ,获得积分10
2分钟前
黙宇循光完成签到 ,获得积分10
2分钟前
刘焱炎发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
西安浴日光能赵炜完成签到,获得积分10
2分钟前
秋夜临完成签到,获得积分10
2分钟前
善良的书本完成签到,获得积分10
4分钟前
123完成签到 ,获得积分10
4分钟前
4分钟前
孙卫平发布了新的文献求助10
4分钟前
苦行僧完成签到 ,获得积分10
4分钟前
zhdjj完成签到 ,获得积分10
4分钟前
研友_LmgOaZ完成签到 ,获得积分0
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
kmzzy完成签到,获得积分10
5分钟前
5分钟前
wang完成签到 ,获得积分10
5分钟前
林利芳完成签到 ,获得积分10
5分钟前
lanxinge发布了新的文献求助10
5分钟前
木南大宝完成签到 ,获得积分10
5分钟前
雪妮完成签到 ,获得积分10
5分钟前
一白完成签到 ,获得积分10
6分钟前
lanxinge发布了新的文献求助10
6分钟前
黑土完成签到 ,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346979
求助须知:如何正确求助?哪些是违规求助? 2973414
关于积分的说明 8659376
捐赠科研通 2653973
什么是DOI,文献DOI怎么找? 1453407
科研通“疑难数据库(出版商)”最低求助积分说明 672903
邀请新用户注册赠送积分活动 662864