Predicting Pathological Invasiveness of Lung Adenocarcinoma Manifesting as GGO-Predominant Nodules: A Combined Prediction Model Generated From DECT

磨玻璃样改变 医学 核医学 腺癌 放射科 逻辑回归 病理 接收机工作特性 病态的 癌症 内科学
作者
Siqi Wang,Guoqiang Liu,Zehui Fu,Zhenxing Jiang,Jianguo Qiu
出处
期刊:Academic Radiology [Elsevier]
卷期号:28 (4): 509-516 被引量:4
标识
DOI:10.1016/j.acra.2020.03.007
摘要

Rationale and Objectives To evaluate qualitative and quantitative indicators generated from Dual-energy computed tomography (DECT) for preoperatively differentiating between invasive adenocarcinoma (IAC) and preinvasive or minimally invasive adenocarcinoma (MIA) lesions manifesting as ground-glass opacity-predominant (GGO-predominant) nodules. Materials and Methods We retrospectively enrolled 143 cases of completely resected GGO-predominant lung adenocarcinoma with DECT examinations between December 2017 and July 2019. Qualitative and quantitative parameters of GGO-predominant nodules were compared after grouping nodules into IAC and preinvasive-MIA groups. A multivariate logistic regression models were used for analyzing these parameters. The diagnostic performance of different parameters was compared by receiver operating characteristic (ROC) curves and Z tests. Results This study included 137 patients (58 years ± 11; male: female = 52:91) with 143 GGO-predominant nodules. The proportion of margins, internal dilated/distorted/cut-off bronchi, internal thickened/stiff/distorted vasculature, pleural indentation, and vascular convergence were higher in the IAC group than in the preinvasive-MIA group, as were the maximum diameter (Dmax), the diameter of the solid component (Dsolid) and the enhanced monochromatic CT value at 40 keV-190 keV (CT40 keV-190 keV) (p range: 0.001–0.019). Logistic regression analyses revealed that margin, Dmax, and CT60 keV values were independent predictors of the IAC group. The area under the curve (AUC) for the combination of margin, Dmax, and CT60 keV was 0.896 (90.2% sensitivity, 70.7% specificity, 84.6% accuracy), which was significantly higher than that for each two of them (all p < 0.05). Conclusion The combined prediction model generated from DECT allows for effective preoperative differentiation between IAC and preinvasive-MIA in GGO-predominant lung adenocarcinomas. To evaluate qualitative and quantitative indicators generated from Dual-energy computed tomography (DECT) for preoperatively differentiating between invasive adenocarcinoma (IAC) and preinvasive or minimally invasive adenocarcinoma (MIA) lesions manifesting as ground-glass opacity-predominant (GGO-predominant) nodules. We retrospectively enrolled 143 cases of completely resected GGO-predominant lung adenocarcinoma with DECT examinations between December 2017 and July 2019. Qualitative and quantitative parameters of GGO-predominant nodules were compared after grouping nodules into IAC and preinvasive-MIA groups. A multivariate logistic regression models were used for analyzing these parameters. The diagnostic performance of different parameters was compared by receiver operating characteristic (ROC) curves and Z tests. This study included 137 patients (58 years ± 11; male: female = 52:91) with 143 GGO-predominant nodules. The proportion of margins, internal dilated/distorted/cut-off bronchi, internal thickened/stiff/distorted vasculature, pleural indentation, and vascular convergence were higher in the IAC group than in the preinvasive-MIA group, as were the maximum diameter (Dmax), the diameter of the solid component (Dsolid) and the enhanced monochromatic CT value at 40 keV-190 keV (CT40 keV-190 keV) (p range: 0.001–0.019). Logistic regression analyses revealed that margin, Dmax, and CT60 keV values were independent predictors of the IAC group. The area under the curve (AUC) for the combination of margin, Dmax, and CT60 keV was 0.896 (90.2% sensitivity, 70.7% specificity, 84.6% accuracy), which was significantly higher than that for each two of them (all p < 0.05). The combined prediction model generated from DECT allows for effective preoperative differentiation between IAC and preinvasive-MIA in GGO-predominant lung adenocarcinomas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oceanao应助Bambi采纳,获得10
刚刚
贪玩菲鹰发布了新的文献求助10
刚刚
顾矜应助stronger采纳,获得10
刚刚
1秒前
wuyuyu5413完成签到,获得积分10
1秒前
温暖发布了新的文献求助10
2秒前
充电宝应助bingsu108采纳,获得10
2秒前
2秒前
默默的甜瓜完成签到,获得积分10
2秒前
cc2064完成签到 ,获得积分10
2秒前
srui发布了新的文献求助10
3秒前
3秒前
sec完成签到,获得积分10
3秒前
SiDi发布了新的文献求助10
3秒前
4秒前
hjkk完成签到,获得积分10
4秒前
嘎发完成签到,获得积分10
5秒前
5秒前
夜守发布了新的文献求助10
6秒前
薰硝壤应助ikuya采纳,获得30
6秒前
Owen应助阿狸a采纳,获得30
7秒前
矿渣完成签到,获得积分10
7秒前
万能图书馆应助SiDi采纳,获得10
7秒前
7秒前
ShowMaker应助EVE采纳,获得50
7秒前
小灰灰完成签到,获得积分10
7秒前
song完成签到,获得积分10
7秒前
汉堡包应助温暖采纳,获得10
9秒前
wen发布了新的文献求助10
9秒前
9秒前
所所应助芸沐采纳,获得10
9秒前
chemier027发布了新的文献求助10
10秒前
黛寒完成签到 ,获得积分10
11秒前
熊阿阿完成签到 ,获得积分10
12秒前
sq0507完成签到,获得积分10
12秒前
YCY完成签到,获得积分10
12秒前
12秒前
12秒前
heart1zzz发布了新的文献求助10
13秒前
Stanfuny完成签到,获得积分10
13秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156574
求助须知:如何正确求助?哪些是违规求助? 2808051
关于积分的说明 7875794
捐赠科研通 2466300
什么是DOI,文献DOI怎么找? 1312843
科研通“疑难数据库(出版商)”最低求助积分说明 630280
版权声明 601919