已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting Pathological Invasiveness of Lung Adenocarcinoma Manifesting as GGO-Predominant Nodules: A Combined Prediction Model Generated From DECT

磨玻璃样改变 医学 核医学 腺癌 放射科 逻辑回归 病理 接收机工作特性 病态的 癌症 内科学
作者
Siqi Wang,Guoqiang Liu,Zehui Fu,Zhenxing Jiang,Jianguo Qiu
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:28 (4): 509-516 被引量:7
标识
DOI:10.1016/j.acra.2020.03.007
摘要

Rationale and Objectives To evaluate qualitative and quantitative indicators generated from Dual-energy computed tomography (DECT) for preoperatively differentiating between invasive adenocarcinoma (IAC) and preinvasive or minimally invasive adenocarcinoma (MIA) lesions manifesting as ground-glass opacity-predominant (GGO-predominant) nodules. Materials and Methods We retrospectively enrolled 143 cases of completely resected GGO-predominant lung adenocarcinoma with DECT examinations between December 2017 and July 2019. Qualitative and quantitative parameters of GGO-predominant nodules were compared after grouping nodules into IAC and preinvasive-MIA groups. A multivariate logistic regression models were used for analyzing these parameters. The diagnostic performance of different parameters was compared by receiver operating characteristic (ROC) curves and Z tests. Results This study included 137 patients (58 years ± 11; male: female = 52:91) with 143 GGO-predominant nodules. The proportion of margins, internal dilated/distorted/cut-off bronchi, internal thickened/stiff/distorted vasculature, pleural indentation, and vascular convergence were higher in the IAC group than in the preinvasive-MIA group, as were the maximum diameter (Dmax), the diameter of the solid component (Dsolid) and the enhanced monochromatic CT value at 40 keV-190 keV (CT40 keV-190 keV) (p range: 0.001–0.019). Logistic regression analyses revealed that margin, Dmax, and CT60 keV values were independent predictors of the IAC group. The area under the curve (AUC) for the combination of margin, Dmax, and CT60 keV was 0.896 (90.2% sensitivity, 70.7% specificity, 84.6% accuracy), which was significantly higher than that for each two of them (all p < 0.05). Conclusion The combined prediction model generated from DECT allows for effective preoperative differentiation between IAC and preinvasive-MIA in GGO-predominant lung adenocarcinomas. To evaluate qualitative and quantitative indicators generated from Dual-energy computed tomography (DECT) for preoperatively differentiating between invasive adenocarcinoma (IAC) and preinvasive or minimally invasive adenocarcinoma (MIA) lesions manifesting as ground-glass opacity-predominant (GGO-predominant) nodules. We retrospectively enrolled 143 cases of completely resected GGO-predominant lung adenocarcinoma with DECT examinations between December 2017 and July 2019. Qualitative and quantitative parameters of GGO-predominant nodules were compared after grouping nodules into IAC and preinvasive-MIA groups. A multivariate logistic regression models were used for analyzing these parameters. The diagnostic performance of different parameters was compared by receiver operating characteristic (ROC) curves and Z tests. This study included 137 patients (58 years ± 11; male: female = 52:91) with 143 GGO-predominant nodules. The proportion of margins, internal dilated/distorted/cut-off bronchi, internal thickened/stiff/distorted vasculature, pleural indentation, and vascular convergence were higher in the IAC group than in the preinvasive-MIA group, as were the maximum diameter (Dmax), the diameter of the solid component (Dsolid) and the enhanced monochromatic CT value at 40 keV-190 keV (CT40 keV-190 keV) (p range: 0.001–0.019). Logistic regression analyses revealed that margin, Dmax, and CT60 keV values were independent predictors of the IAC group. The area under the curve (AUC) for the combination of margin, Dmax, and CT60 keV was 0.896 (90.2% sensitivity, 70.7% specificity, 84.6% accuracy), which was significantly higher than that for each two of them (all p < 0.05). The combined prediction model generated from DECT allows for effective preoperative differentiation between IAC and preinvasive-MIA in GGO-predominant lung adenocarcinomas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
脑洞疼应助不器君采纳,获得10
3秒前
3秒前
巫马尔槐发布了新的文献求助10
6秒前
7秒前
8秒前
bluee完成签到,获得积分10
8秒前
9秒前
11秒前
徐逊发布了新的文献求助10
11秒前
sci发布了新的文献求助10
12秒前
msk完成签到,获得积分10
12秒前
万能图书馆应助小萌兽采纳,获得10
12秒前
今后应助疯狂的石头采纳,获得10
13秒前
科研通AI6应助yangyajie采纳,获得20
13秒前
烙饼发布了新的文献求助10
13秒前
qdr发布了新的文献求助30
16秒前
俊逸的雅山完成签到 ,获得积分20
16秒前
不器君发布了新的文献求助10
17秒前
青鸟完成签到,获得积分10
17秒前
香蕉子骞完成签到 ,获得积分10
18秒前
Xiaoqiang完成签到,获得积分10
18秒前
娇娇完成签到 ,获得积分10
20秒前
21秒前
不羁完成签到 ,获得积分10
22秒前
夏爽2023发布了新的文献求助50
22秒前
优雅靖柏发布了新的文献求助10
25秒前
25秒前
re发布了新的文献求助20
28秒前
28秒前
aiine发布了新的文献求助30
30秒前
唐小刚完成签到,获得积分10
30秒前
左耳东发布了新的文献求助30
31秒前
徐猫猫完成签到,获得积分20
33秒前
yyc发布了新的文献求助10
33秒前
34秒前
35秒前
36秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252840
求助须知:如何正确求助?哪些是违规求助? 4416384
关于积分的说明 13749582
捐赠科研通 4288491
什么是DOI,文献DOI怎么找? 2352947
邀请新用户注册赠送积分活动 1349756
关于科研通互助平台的介绍 1309339