Predicting Pathological Invasiveness of Lung Adenocarcinoma Manifesting as GGO-Predominant Nodules: A Combined Prediction Model Generated From DECT

磨玻璃样改变 医学 核医学 腺癌 放射科 逻辑回归 病理 接收机工作特性 病态的 癌症 内科学
作者
Siqi Wang,Guoqiang Liu,Zehui Fu,Zhenxing Jiang,Jianguo Qiu
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:28 (4): 509-516 被引量:4
标识
DOI:10.1016/j.acra.2020.03.007
摘要

Rationale and Objectives To evaluate qualitative and quantitative indicators generated from Dual-energy computed tomography (DECT) for preoperatively differentiating between invasive adenocarcinoma (IAC) and preinvasive or minimally invasive adenocarcinoma (MIA) lesions manifesting as ground-glass opacity-predominant (GGO-predominant) nodules. Materials and Methods We retrospectively enrolled 143 cases of completely resected GGO-predominant lung adenocarcinoma with DECT examinations between December 2017 and July 2019. Qualitative and quantitative parameters of GGO-predominant nodules were compared after grouping nodules into IAC and preinvasive-MIA groups. A multivariate logistic regression models were used for analyzing these parameters. The diagnostic performance of different parameters was compared by receiver operating characteristic (ROC) curves and Z tests. Results This study included 137 patients (58 years ± 11; male: female = 52:91) with 143 GGO-predominant nodules. The proportion of margins, internal dilated/distorted/cut-off bronchi, internal thickened/stiff/distorted vasculature, pleural indentation, and vascular convergence were higher in the IAC group than in the preinvasive-MIA group, as were the maximum diameter (Dmax), the diameter of the solid component (Dsolid) and the enhanced monochromatic CT value at 40 keV-190 keV (CT40 keV-190 keV) (p range: 0.001–0.019). Logistic regression analyses revealed that margin, Dmax, and CT60 keV values were independent predictors of the IAC group. The area under the curve (AUC) for the combination of margin, Dmax, and CT60 keV was 0.896 (90.2% sensitivity, 70.7% specificity, 84.6% accuracy), which was significantly higher than that for each two of them (all p < 0.05). Conclusion The combined prediction model generated from DECT allows for effective preoperative differentiation between IAC and preinvasive-MIA in GGO-predominant lung adenocarcinomas. To evaluate qualitative and quantitative indicators generated from Dual-energy computed tomography (DECT) for preoperatively differentiating between invasive adenocarcinoma (IAC) and preinvasive or minimally invasive adenocarcinoma (MIA) lesions manifesting as ground-glass opacity-predominant (GGO-predominant) nodules. We retrospectively enrolled 143 cases of completely resected GGO-predominant lung adenocarcinoma with DECT examinations between December 2017 and July 2019. Qualitative and quantitative parameters of GGO-predominant nodules were compared after grouping nodules into IAC and preinvasive-MIA groups. A multivariate logistic regression models were used for analyzing these parameters. The diagnostic performance of different parameters was compared by receiver operating characteristic (ROC) curves and Z tests. This study included 137 patients (58 years ± 11; male: female = 52:91) with 143 GGO-predominant nodules. The proportion of margins, internal dilated/distorted/cut-off bronchi, internal thickened/stiff/distorted vasculature, pleural indentation, and vascular convergence were higher in the IAC group than in the preinvasive-MIA group, as were the maximum diameter (Dmax), the diameter of the solid component (Dsolid) and the enhanced monochromatic CT value at 40 keV-190 keV (CT40 keV-190 keV) (p range: 0.001–0.019). Logistic regression analyses revealed that margin, Dmax, and CT60 keV values were independent predictors of the IAC group. The area under the curve (AUC) for the combination of margin, Dmax, and CT60 keV was 0.896 (90.2% sensitivity, 70.7% specificity, 84.6% accuracy), which was significantly higher than that for each two of them (all p < 0.05). The combined prediction model generated from DECT allows for effective preoperative differentiation between IAC and preinvasive-MIA in GGO-predominant lung adenocarcinomas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈发布了新的文献求助10
1秒前
勤恳天川完成签到 ,获得积分10
1秒前
一口一个小面包完成签到,获得积分10
1秒前
无花果应助ss采纳,获得30
1秒前
2秒前
2秒前
2秒前
2秒前
z610938841发布了新的文献求助10
2秒前
3秒前
莹亮的星空完成签到,获得积分10
3秒前
陈小强x完成签到,获得积分10
3秒前
4秒前
4秒前
ZGAAQj完成签到 ,获得积分10
4秒前
5秒前
曾经天蓉完成签到,获得积分10
5秒前
5秒前
小溪溪发布了新的文献求助10
5秒前
木影忆发布了新的文献求助10
6秒前
pokexuejiao发布了新的文献求助10
8秒前
ranran完成签到,获得积分20
8秒前
丘比特应助发嗲的戎采纳,获得10
8秒前
SciGPT应助youyuer采纳,获得10
8秒前
qqqqgc发布了新的文献求助10
8秒前
9秒前
9秒前
活泼蜡烛发布了新的文献求助10
10秒前
Yamila完成签到,获得积分10
10秒前
pika1234完成签到,获得积分20
10秒前
orixero应助songxiaohong采纳,获得10
10秒前
xr发布了新的文献求助10
11秒前
善学以致用应助孤独盼望采纳,获得10
11秒前
goldenrod完成签到,获得积分10
12秒前
13秒前
myg8627完成签到,获得积分10
13秒前
13秒前
科研通AI2S应助iuu采纳,获得20
14秒前
Zhaoyuemeng完成签到 ,获得积分10
14秒前
橘橙色应助cbx采纳,获得10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992317
求助须知:如何正确求助?哪些是违规求助? 3533285
关于积分的说明 11261852
捐赠科研通 3272704
什么是DOI,文献DOI怎么找? 1805867
邀请新用户注册赠送积分活动 882732
科研通“疑难数据库(出版商)”最低求助积分说明 809459