清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predicting Pathological Invasiveness of Lung Adenocarcinoma Manifesting as GGO-Predominant Nodules: A Combined Prediction Model Generated From DECT

磨玻璃样改变 医学 核医学 腺癌 放射科 逻辑回归 病理 接收机工作特性 病态的 癌症 内科学
作者
Siqi Wang,Guoqiang Liu,Zehui Fu,Zhenxing Jiang,Jianguo Qiu
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:28 (4): 509-516 被引量:7
标识
DOI:10.1016/j.acra.2020.03.007
摘要

Rationale and Objectives To evaluate qualitative and quantitative indicators generated from Dual-energy computed tomography (DECT) for preoperatively differentiating between invasive adenocarcinoma (IAC) and preinvasive or minimally invasive adenocarcinoma (MIA) lesions manifesting as ground-glass opacity-predominant (GGO-predominant) nodules. Materials and Methods We retrospectively enrolled 143 cases of completely resected GGO-predominant lung adenocarcinoma with DECT examinations between December 2017 and July 2019. Qualitative and quantitative parameters of GGO-predominant nodules were compared after grouping nodules into IAC and preinvasive-MIA groups. A multivariate logistic regression models were used for analyzing these parameters. The diagnostic performance of different parameters was compared by receiver operating characteristic (ROC) curves and Z tests. Results This study included 137 patients (58 years ± 11; male: female = 52:91) with 143 GGO-predominant nodules. The proportion of margins, internal dilated/distorted/cut-off bronchi, internal thickened/stiff/distorted vasculature, pleural indentation, and vascular convergence were higher in the IAC group than in the preinvasive-MIA group, as were the maximum diameter (Dmax), the diameter of the solid component (Dsolid) and the enhanced monochromatic CT value at 40 keV-190 keV (CT40 keV-190 keV) (p range: 0.001–0.019). Logistic regression analyses revealed that margin, Dmax, and CT60 keV values were independent predictors of the IAC group. The area under the curve (AUC) for the combination of margin, Dmax, and CT60 keV was 0.896 (90.2% sensitivity, 70.7% specificity, 84.6% accuracy), which was significantly higher than that for each two of them (all p < 0.05). Conclusion The combined prediction model generated from DECT allows for effective preoperative differentiation between IAC and preinvasive-MIA in GGO-predominant lung adenocarcinomas. To evaluate qualitative and quantitative indicators generated from Dual-energy computed tomography (DECT) for preoperatively differentiating between invasive adenocarcinoma (IAC) and preinvasive or minimally invasive adenocarcinoma (MIA) lesions manifesting as ground-glass opacity-predominant (GGO-predominant) nodules. We retrospectively enrolled 143 cases of completely resected GGO-predominant lung adenocarcinoma with DECT examinations between December 2017 and July 2019. Qualitative and quantitative parameters of GGO-predominant nodules were compared after grouping nodules into IAC and preinvasive-MIA groups. A multivariate logistic regression models were used for analyzing these parameters. The diagnostic performance of different parameters was compared by receiver operating characteristic (ROC) curves and Z tests. This study included 137 patients (58 years ± 11; male: female = 52:91) with 143 GGO-predominant nodules. The proportion of margins, internal dilated/distorted/cut-off bronchi, internal thickened/stiff/distorted vasculature, pleural indentation, and vascular convergence were higher in the IAC group than in the preinvasive-MIA group, as were the maximum diameter (Dmax), the diameter of the solid component (Dsolid) and the enhanced monochromatic CT value at 40 keV-190 keV (CT40 keV-190 keV) (p range: 0.001–0.019). Logistic regression analyses revealed that margin, Dmax, and CT60 keV values were independent predictors of the IAC group. The area under the curve (AUC) for the combination of margin, Dmax, and CT60 keV was 0.896 (90.2% sensitivity, 70.7% specificity, 84.6% accuracy), which was significantly higher than that for each two of them (all p < 0.05). The combined prediction model generated from DECT allows for effective preoperative differentiation between IAC and preinvasive-MIA in GGO-predominant lung adenocarcinomas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ceeray23发布了新的文献求助20
刚刚
量子星尘发布了新的文献求助10
12秒前
43秒前
46秒前
Krim完成签到 ,获得积分10
1分钟前
我有我风格完成签到 ,获得积分10
1分钟前
Akim应助George采纳,获得10
1分钟前
babalala完成签到,获得积分10
1分钟前
我是笨蛋完成签到 ,获得积分10
1分钟前
Virtual应助babalala采纳,获得20
1分钟前
大医仁心完成签到 ,获得积分10
1分钟前
1分钟前
呆呆的猕猴桃完成签到 ,获得积分10
1分钟前
TheaGao完成签到 ,获得积分0
1分钟前
George发布了新的文献求助10
1分钟前
踏实数据线完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
Benhnhk21完成签到,获得积分10
3分钟前
红枫没有微雨怜完成签到 ,获得积分10
3分钟前
慕青应助dcm采纳,获得10
4分钟前
瘦瘦的枫叶完成签到 ,获得积分10
5分钟前
wythu16完成签到,获得积分10
5分钟前
星辰大海应助Carlos_Soares采纳,获得10
5分钟前
老石完成签到 ,获得积分10
5分钟前
开心的瘦子完成签到,获得积分10
5分钟前
5分钟前
JAYZHANG完成签到,获得积分10
6分钟前
Carlos_Soares发布了新的文献求助10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
大个应助科研通管家采纳,获得10
6分钟前
大模型应助科研通管家采纳,获得20
6分钟前
Carlos_Soares完成签到,获得积分10
6分钟前
maher完成签到 ,获得积分10
6分钟前
6分钟前
asda发布了新的文献求助10
6分钟前
asda完成签到,获得积分20
6分钟前
呆鸥完成签到,获得积分10
6分钟前
ZYP应助OCDer采纳,获得80
7分钟前
8分钟前
林夕完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612350
求助须知:如何正确求助?哪些是违规求助? 4017599
关于积分的说明 12436515
捐赠科研通 3699718
什么是DOI,文献DOI怎么找? 2040286
邀请新用户注册赠送积分活动 1073108
科研通“疑难数据库(出版商)”最低求助积分说明 956819