变构调节
法尼甾体X受体
核受体
化学
转录因子
计算生物学
生物化学
细胞生物学
受体
药理学
生物
基因
作者
Yue Chen,Junhao Li,Zengrui Wu,Guixia Liu,Honglin Li,Yun Tang,Weihua Li
标识
DOI:10.1021/acs.jcim.9b00914
摘要
The farnesoid X receptor (FXR) is a bile acid-sensing transcription factor with indispensable roles in regulating metabolic processes. Nowadays, FXR has become a highly promising drug target for severe liver disorders, especially nonalcoholic steatohepatitis (NASH). A recent study showed that imatinib and its analogues were able to allosterically enhance agonist-induced FXR activation and its target gene expression. However, the allosteric modulation mechanism of FXR by these compounds remains unclear. In this work, the most effective imatinib analogue, P16, was used as a probe to explore this issue by computational approaches. Our results identified one potential allosteric site surrounded by residues Ile335, Phe336, Lys338, Glu339, Leu340, and Leu348, which could efficiently accommodate P16. In addition, the long-time molecular dynamics simulations indicated that the binding of P16 could significantly decrease the fluctuation of the co-activator and enhance the communications between the endogenous ligand chenodeoxycholic acid (CDCA) and FXR. By analyzing the residue interaction network, we observed two unique communication pathways connecting P16 and CDCA through three key residues, Arg331, Ser332, and Phe336. The communications of network organization in the P16-bound complex may allow the synergistic effect of the two compounds via robust signal transmission between the binding sites and global network bridges, which coordinate allosteric transitions and modulate the receptor activity. Our study offers insights into the allosteric modulation occurring in FXR and would be helpful for discovery of new allosteric modulators targeting FXR for further clinical research.
科研通智能强力驱动
Strongly Powered by AbleSci AI