A Nomogram and a Risk Classification System Predicting the Cancer-Specific Survival of Patients With Initially-Diagnosed Osseous Spinal and Pelvic Tumors

列线图 医学 骨盆 肿瘤科 外科 放射科
作者
Qiang Zhou,A-Bing Li,Zhong-Qin Lin,Hongzhen Zhang
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
卷期号:45 (12): E713-E720 被引量:11
标识
DOI:10.1097/brs.0000000000003404
摘要

Study Design. Retrospective analysis. Objective. Our goal was to provide a predictive model and a risk classification system that predicts cancer-specific survival (CSS) from spinal and pelvic tumors. Summary of Background Data. Primary bone tumors of the spinal and pelvic are rare, thus limiting the understanding of the manifestations and survival from these tumors. Nomograms are the graphical representation of mathematical relationships or laws that accurately predict individual survival. Methods. A total of 1033 patients with spinal and pelvic bone tumors between 2004 and 2016 were selected from the Surveillance, Epidemiology, and End Results (SEER) database. Multivariate Cox analysis was used on the training set to select significant predictors to build a nomogram that predicted 3- and 5-year CSS. We validate the precision of the nomogram by discrimination and calibration, and the clinical value of nomogram was assessed by making use of a decision curve analyses (DCA). Results. Data from 1033 patients with initially-diagnosed spinal and pelvic tumors were extracted from the SEER database. Multivariate analysis of the training cohort, predictors included in the nomogram were age, pathological type, tumor stage, and surgery. The value of C -index was 0.711 and 0.743 for the internal and external validation sets, respectively, indicating good agreement with actual CSS. The internal and external calibration curves revealed good correlation of CSS between the actual observation and the nomogram. Then, the DCA showed greater net benefits than that of treat-all or treat-none at all time points. A novel risk grouping system was established for CSS that can readily divide all patients into three distinct risk groups. Conclusion. The proposed nomogram obtained more precision prognostic prediction for patients with initially-diagnosed primary spinal and pelvic tumors. Level of Evidence: 3
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助科研通管家采纳,获得10
刚刚
今后应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得30
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
健壮的怜南完成签到,获得积分10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
夹心就是嘉欣呀完成签到,获得积分10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
1秒前
LWS应助科研通管家采纳,获得20
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
彭于彦祖应助科研通管家采纳,获得30
2秒前
子车茗应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
2秒前
大模型应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得30
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
3秒前
maojin发布了新的文献求助10
3秒前
3秒前
光亮的太阳完成签到,获得积分10
4秒前
jevon应助Alex采纳,获得10
4秒前
617499818完成签到,获得积分10
4秒前
hu发布了新的文献求助20
5秒前
研友_VZG7GZ应助三金采纳,获得10
5秒前
6秒前
6秒前
yzz发布了新的文献求助20
6秒前
积极干饭完成签到,获得积分10
7秒前
7秒前
太师完成签到,获得积分10
9秒前
9秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3263394
求助须知:如何正确求助?哪些是违规求助? 2903875
关于积分的说明 8327607
捐赠科研通 2573893
什么是DOI,文献DOI怎么找? 1398645
科研通“疑难数据库(出版商)”最低求助积分说明 654297
邀请新用户注册赠送积分活动 632808