Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a graph convolutional neural network (GCN)

卷积神经网络 计算机科学 图形 人工智能 数据挖掘 理论计算机科学
作者
Byeonghyeop Yu,Yongjin Lee,Keemin Sohn
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:114: 189-204 被引量:152
标识
DOI:10.1016/j.trc.2020.02.013
摘要

The traffic state in an urban transportation network is determined via spatio-temporal traffic propagation. In early traffic forecasting studies, time-series models were adopted to accommodate autocorrelations between traffic states. The incorporation of spatial correlations into the forecasting of traffic states, however, involved a computational burden. Deep learning technologies were recently introduced to traffic forecasting in order to accommodate the spatio-temporal dependencies among traffic states. In the present study, we devised a novel graph-based neural network that expanded the existing graph convolutional neural network (GCN). The proposed model allowed us to differentiate the intensity of connecting to neighbor roads, unlike existing GCNs that give equal weight to each neighbor road. A plausible model architecture that mimicked real traffic propagation was established based on the graph convolution. The domain knowledge was efficiently incorporated into a neural network architecture. The present study also employed a generative adversarial framework to ensure that a forecasted traffic state could be as realistic as possible considering the joint probabilistic density of real traffic states. The forecasting performance of the proposed model surpassed that of the original GCN model, and the estimated adjacency matrices revealed the hidden nature of real traffic propagation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
史蒂夫完成签到,获得积分10
1秒前
laox发布了新的文献求助20
3秒前
量子星尘发布了新的文献求助10
3秒前
5秒前
蛋烘糕发布了新的文献求助10
5秒前
执着的导师完成签到,获得积分10
5秒前
科研通AI6应助郑伟李采纳,获得30
6秒前
浮游应助称心的板栗采纳,获得10
7秒前
阔达宝莹发布了新的文献求助10
8秒前
8秒前
等于零完成签到 ,获得积分10
8秒前
hush完成签到,获得积分20
9秒前
9秒前
10秒前
李健的小迷弟应助wangting采纳,获得10
10秒前
wny发布了新的文献求助20
13秒前
Criminology34完成签到,获得积分0
13秒前
13秒前
yulong完成签到,获得积分10
14秒前
qu发布了新的文献求助10
16秒前
阔达宝莹完成签到,获得积分20
17秒前
笙笙完成签到,获得积分10
17秒前
窜天猴发布了新的文献求助10
18秒前
20秒前
背影完成签到 ,获得积分10
20秒前
李绍进完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
23秒前
麻雀发布了新的文献求助10
24秒前
Owen应助疼痛采纳,获得10
24秒前
Liu完成签到,获得积分10
24秒前
烟花应助爱听歌的萍采纳,获得10
24秒前
hao完成签到,获得积分10
26秒前
科研通AI2S应助阔达宝莹采纳,获得10
26秒前
寻找组织应助dery采纳,获得30
27秒前
27秒前
27秒前
单薄归尘完成签到 ,获得积分10
27秒前
jj完成签到,获得积分10
28秒前
窜天猴完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495259
求助须知:如何正确求助?哪些是违规求助? 4592967
关于积分的说明 14439338
捐赠科研通 4525803
什么是DOI,文献DOI怎么找? 2479715
邀请新用户注册赠送积分活动 1464544
关于科研通互助平台的介绍 1437385