Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a graph convolutional neural network (GCN)

卷积神经网络 计算机科学 图形 人工智能 数据挖掘 理论计算机科学
作者
Byeonghyeop Yu,Yongjin Lee,Keemin Sohn
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:114: 189-204 被引量:152
标识
DOI:10.1016/j.trc.2020.02.013
摘要

The traffic state in an urban transportation network is determined via spatio-temporal traffic propagation. In early traffic forecasting studies, time-series models were adopted to accommodate autocorrelations between traffic states. The incorporation of spatial correlations into the forecasting of traffic states, however, involved a computational burden. Deep learning technologies were recently introduced to traffic forecasting in order to accommodate the spatio-temporal dependencies among traffic states. In the present study, we devised a novel graph-based neural network that expanded the existing graph convolutional neural network (GCN). The proposed model allowed us to differentiate the intensity of connecting to neighbor roads, unlike existing GCNs that give equal weight to each neighbor road. A plausible model architecture that mimicked real traffic propagation was established based on the graph convolution. The domain knowledge was efficiently incorporated into a neural network architecture. The present study also employed a generative adversarial framework to ensure that a forecasted traffic state could be as realistic as possible considering the joint probabilistic density of real traffic states. The forecasting performance of the proposed model surpassed that of the original GCN model, and the estimated adjacency matrices revealed the hidden nature of real traffic propagation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清爽的冬寒完成签到 ,获得积分10
9秒前
LWJ完成签到 ,获得积分10
13秒前
易槐完成签到 ,获得积分10
13秒前
勤qin完成签到 ,获得积分10
21秒前
无所谓完成签到,获得积分20
22秒前
terryok完成签到 ,获得积分10
24秒前
万能图书馆应助chanyelo采纳,获得10
25秒前
yanzilin完成签到 ,获得积分10
26秒前
26秒前
qrt发布了新的文献求助10
30秒前
面汤完成签到 ,获得积分10
32秒前
Chloe完成签到,获得积分10
33秒前
感恩有你完成签到,获得积分10
35秒前
张1完成签到,获得积分20
38秒前
彪行天下完成签到,获得积分10
41秒前
张1发布了新的文献求助10
42秒前
修仙中应助科研通管家采纳,获得10
43秒前
bkagyin应助科研通管家采纳,获得10
43秒前
赘婿应助科研通管家采纳,获得10
43秒前
修仙中应助科研通管家采纳,获得10
43秒前
七月流火应助科研通管家采纳,获得50
43秒前
那时花开应助科研通管家采纳,获得10
43秒前
修仙中应助科研通管家采纳,获得10
43秒前
SciGPT应助科研通管家采纳,获得10
43秒前
科研通AI6应助科研通管家采纳,获得10
44秒前
那时花开应助科研通管家采纳,获得10
44秒前
英俊的铭应助科研通管家采纳,获得10
44秒前
阳光桐完成签到,获得积分10
49秒前
penguin完成签到 ,获得积分10
52秒前
无语完成签到,获得积分10
52秒前
54秒前
科研蜗牛完成签到,获得积分10
55秒前
56秒前
wanghao完成签到 ,获得积分10
58秒前
HJQ发布了新的文献求助10
1分钟前
不做第一只做唯一应助张1采纳,获得10
1分钟前
英俊的铭应助张1采纳,获得10
1分钟前
PPSlu完成签到,获得积分10
1分钟前
科研通AI6应助寒冷的断秋采纳,获得10
1分钟前
Winfrednano完成签到,获得积分10
1分钟前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378458
求助须知:如何正确求助?哪些是违规求助? 4502884
关于积分的说明 14014658
捐赠科研通 4411499
什么是DOI,文献DOI怎么找? 2423316
邀请新用户注册赠送积分活动 1416206
关于科研通互助平台的介绍 1393644