Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a graph convolutional neural network (GCN)

卷积神经网络 计算机科学 图形 人工智能 数据挖掘 理论计算机科学
作者
Byeonghyeop Yu,Yongjin Lee,Keemin Sohn
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:114: 189-204 被引量:152
标识
DOI:10.1016/j.trc.2020.02.013
摘要

The traffic state in an urban transportation network is determined via spatio-temporal traffic propagation. In early traffic forecasting studies, time-series models were adopted to accommodate autocorrelations between traffic states. The incorporation of spatial correlations into the forecasting of traffic states, however, involved a computational burden. Deep learning technologies were recently introduced to traffic forecasting in order to accommodate the spatio-temporal dependencies among traffic states. In the present study, we devised a novel graph-based neural network that expanded the existing graph convolutional neural network (GCN). The proposed model allowed us to differentiate the intensity of connecting to neighbor roads, unlike existing GCNs that give equal weight to each neighbor road. A plausible model architecture that mimicked real traffic propagation was established based on the graph convolution. The domain knowledge was efficiently incorporated into a neural network architecture. The present study also employed a generative adversarial framework to ensure that a forecasted traffic state could be as realistic as possible considering the joint probabilistic density of real traffic states. The forecasting performance of the proposed model surpassed that of the original GCN model, and the estimated adjacency matrices revealed the hidden nature of real traffic propagation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
孙阳阳完成签到 ,获得积分10
1秒前
8R60d8应助无奈初雪采纳,获得10
2秒前
一一应助WuFen采纳,获得20
2秒前
ZhangH完成签到,获得积分10
2秒前
自觉葶发布了新的文献求助10
3秒前
桐桐应助李山鬼采纳,获得10
3秒前
4秒前
4秒前
5秒前
孤勇者完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
小船发布了新的文献求助10
7秒前
ZhangH发布了新的文献求助30
7秒前
7秒前
8秒前
8秒前
褚乘风完成签到,获得积分10
9秒前
冷酷秋柳发布了新的文献求助20
10秒前
化工渣渣发布了新的文献求助10
11秒前
魔幻的橘子完成签到 ,获得积分10
11秒前
11秒前
Artemis完成签到 ,获得积分10
12秒前
12秒前
12秒前
12秒前
威武从寒应助Explorer采纳,获得200
13秒前
忧虑的访梦完成签到,获得积分10
13秒前
傲娇的雁菱完成签到,获得积分10
15秒前
15秒前
15秒前
要啥自行车完成签到,获得积分10
15秒前
隐形曼青应助无牙采纳,获得10
15秒前
17秒前
顺心无极发布了新的文献求助10
17秒前
放寒假的发布了新的文献求助10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455082
求助须知:如何正确求助?哪些是违规求助? 3050350
关于积分的说明 9021081
捐赠科研通 2738991
什么是DOI,文献DOI怎么找? 1502390
科研通“疑难数据库(出版商)”最低求助积分说明 694500
邀请新用户注册赠送积分活动 693216