涡轮叶片
压电
超声波传感器
材料科学
涡轮机
风力发电
结构工程
结构健康监测
声学
机械工程
工程类
复合材料
电气工程
物理
作者
Sang-Hyeon Kang,Myeong-Cheol Kang,Lae-Hyong Kang
标识
DOI:10.1177/14759217211026192
摘要
Blades play a critical role in the wind turbine system. Therefore, their structural health monitoring is very important. Blades are damaged by sudden changes in wind load, cracks due to collision of foreign objects, and disasters, such as lightning strikes, hail, and typhoons. Moreover, blades are expensive to maintain. Defects or damages to wind turbine blades reduce the life span and power generation efficiency of the wind turbine and increase safety risks and maintenance costs. Therefore, it is very important to detect blade damage to prevent problems in the wind turbine. Ultrasonic inspection is suitable for blades made of composite materials. Piezoelectric ceramic, which is a typical piezoelectric element, has relatively high sensitivity compared to other sensors. However, it suffers from brittle fractures and thus difficult to apply to curved structures. To overcome the limitations of piezoelectric ceramics, a piezoelectric flexible line sensor that can be applied to curved surfaces was manufactured using the dice-and-fill method for a [Pb(Li 0.25 Nb 0.75 )] 0.06 [Pb(Mg 0.33 Nb 0.67 )] 0.06 [Pb(Zr 0.50 Ti 0.50 )] 0.88 O 3 with 0.7 wt% MnO 2 (PZTNMML) ceramic disc. Instead of a typical ultrasonic inspection method with limited surface contact, a laser capable of producing ultrasonic excitation of ultrasonic waves over a large area from a long distance was used. The possibility of detecting a defect on the wind turbine blade using a piezoelectric flexible line sensor and laser ultrasound was confirmed in this study.
科研通智能强力驱动
Strongly Powered by AbleSci AI