清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Comparison of Geographical Traceability of Wild and Cultivated Macrohyporia cocos with Different Data Fusion Approaches

可追溯性 主成分分析 模式识别(心理学) 人工智能 线性判别分析 数学 偏最小二乘回归 数据挖掘 计算机科学 统计
作者
Li Wang,Qinqin Wang,Yuanzhong Wang,Yunmei Wang
出处
期刊:Journal of analytical methods in chemistry [Hindawi Limited]
卷期号:2021: 1-13 被引量:1
标识
DOI:10.1155/2021/5818999
摘要

Poria originated from the dried sclerotium of Macrohyporia cocos is an edible traditional Chinese medicine with high economic value. Due to the significant difference in quality between wild and cultivated M. cocos, this study aimed to trace the origin of the fungus from the perspectives of wild and cultivation. In addition, there were quite limited studies about data fusion, a potential strategy, employed and discussed in the geographical traceability of M. cocos. Therefore, we traced the origin of M. cocos from the perspectives of wild and cultivation using multiple data fusion approaches. Supervised pattern recognition techniques, like partial least squares discriminant analysis (PLS-DA) and random forest, were employed in this study using. Five types of data fusion involving low-, mid-, and high-level data fusion strategies were performed. Two feature extraction approaches including the selecting variables by a random forest-based method—Boruta algorithm and producing principal components by the dimension reduction technique of principal component analysis—were considered in data fusion. The results indicate the following: (1) The difference between wild and cultivated samples did exist in terms of the content analysis of vital chemical components and fingerprint analysis. (2) Wild samples need data fusion to realize the origin traceability, and the accuracy of the validation set was 95.24%. (3) Boruta outperformed principal component analysis (PCA) in feature extraction. (4) The mid-level Boruta PLS-DA model took full advantage of information synergy and showed the best performance. This study proved that both geographical traceability and optimal identification methods of cultivated and wild samples were different, and data fusion was a potential technique in the geographical identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
10秒前
郭晨发布了新的文献求助10
14秒前
胡杨树2006完成签到,获得积分10
15秒前
滕皓轩完成签到 ,获得积分10
21秒前
22秒前
柒八染完成签到 ,获得积分10
24秒前
科研通AI2S应助科研通管家采纳,获得10
58秒前
1分钟前
xiazhq完成签到,获得积分10
1分钟前
tmobiusx完成签到,获得积分10
1分钟前
1分钟前
上官若男应助lt0217采纳,获得10
1分钟前
1分钟前
淞淞于我完成签到 ,获得积分10
2分钟前
jason完成签到 ,获得积分10
2分钟前
华仔应助mmyhn采纳,获得10
2分钟前
chichenglin完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
秋夜临完成签到,获得积分10
3分钟前
3分钟前
gobi完成签到 ,获得积分10
3分钟前
CHEN完成签到 ,获得积分10
3分钟前
huiluowork完成签到 ,获得积分10
4分钟前
田田完成签到 ,获得积分10
4分钟前
含蓄的问寒完成签到,获得积分10
4分钟前
平平安安完成签到 ,获得积分10
4分钟前
平平安安关注了科研通微信公众号
4分钟前
mmyhn发布了新的文献求助10
4分钟前
稳重傲晴完成签到 ,获得积分10
4分钟前
5分钟前
mmyhn发布了新的文献求助10
5分钟前
玛琳卡迪马完成签到,获得积分10
5分钟前
青出于蓝蔡完成签到,获得积分10
5分钟前
5分钟前
mmyhn发布了新的文献求助10
5分钟前
5分钟前
xun完成签到,获得积分20
5分钟前
zijingsy完成签到 ,获得积分10
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
体心立方金属铌、钽及其硼化物中滑移与孪生机制的研究 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450460
求助须知:如何正确求助?哪些是违规求助? 3045952
关于积分的说明 9003759
捐赠科研通 2734604
什么是DOI,文献DOI怎么找? 1500096
科研通“疑难数据库(出版商)”最低求助积分说明 693341
邀请新用户注册赠送积分活动 691477