已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Evaluation of acute hematological toxicity by machine learning in gynecologic cancers using postoperative radiotherapy

医学 逻辑回归 急性毒性 放射治疗 朴素贝叶斯分类器 机器学习 支持向量机 毒性 内科学 肿瘤科 计算机科学
作者
Melek Akçay,Durmuş Etiz,Özer Çelik,Alaattin Özen
出处
期刊:Indian Journal of Cancer [Medknow Publications]
卷期号:59 (2): 178-186 被引量:1
标识
DOI:10.4103/ijc.ijc_666_19
摘要

The aim of the study is to investigate the factors affecting acute hematologic toxicity (HT) in the adjuvant radiotherapy (RT) of gynecologic cancers by machine learning.Between January 2015 and September 2018, 121 patients with endometrium and cervical cancer who underwent adjuvant RT with volumetric-modulated arc therapy (VMAT) were evaluated. The relationship between patient and treatment characteristics and acute HT was investigated using machine learning techniques, namely Logistic Regression, XGBoost, Artificial Neural Network, Random Forest, Naive Bayes, Support Vector Machine (SVM), and Gaussian Naive Bayes (GaussianNB) algorithms.No HT was observed in 11 cases (9.1%) and at least one grade of HT was observed in 110 cases. There were 55 (45.5%) cases with ≤grade 2 HT (mild HT) and 66 (54.5%) cases with grade ≥3 HT (severe HT). None of the patients developed grade 5 HT. Of 24 variables that could affect acute HT, nine were determined as important variables. According to the results, the best machine learning technique for acute HT estimation was SVM (accuracy 70%, area under curve (AUC): 0.65, sensitivity 71.4%, specificity 66.6%). Parameters affecting hematologic toxicity were evaluated also by classical statistical methods and there was a statistically significant relationship between age, RT, and bone marrow (BM) maximum dose.It is important to predict the patients who will develop acute HT in order to minimize the side effects of treatment. If these cases can be identified in advance, toxicity rates can be reduced by taking necessary precautions. These cases can be predicted with machine learning algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执着的映之完成签到,获得积分10
1秒前
3秒前
江洋大盗完成签到,获得积分10
6秒前
小啊三完成签到,获得积分20
7秒前
爆米花应助peanut采纳,获得10
10秒前
栗栗子完成签到 ,获得积分10
11秒前
荣枫完成签到,获得积分10
13秒前
14秒前
Tana发布了新的文献求助10
15秒前
20秒前
悦耳的听双完成签到,获得积分10
22秒前
毛豆应助Mandy采纳,获得10
23秒前
25秒前
sanke关注了科研通微信公众号
27秒前
27秒前
醉熏的月光l完成签到,获得积分10
29秒前
Ker发布了新的文献求助10
29秒前
汉尼拔灬灬完成签到,获得积分10
29秒前
流川封发布了新的文献求助30
32秒前
original完成签到,获得积分20
32秒前
34秒前
小阿波发布了新的文献求助200
34秒前
积极的尔岚完成签到 ,获得积分10
34秒前
36秒前
bkagyin应助科研通管家采纳,获得10
36秒前
斯文败类应助科研通管家采纳,获得10
36秒前
37秒前
original发布了新的文献求助20
39秒前
XINXINWANG完成签到 ,获得积分10
40秒前
桃桃完成签到,获得积分10
42秒前
鸠摩智发布了新的文献求助10
44秒前
WWW=WWW应助zwy1216采纳,获得30
45秒前
小阿波完成签到,获得积分10
48秒前
华仔应助江河采纳,获得10
51秒前
52秒前
江糖糖发布了新的文献求助10
53秒前
LSY28完成签到,获得积分10
55秒前
55秒前
didi完成签到 ,获得积分10
57秒前
毛豆应助江糖糖采纳,获得10
58秒前
高分求助中
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3417307
求助须知:如何正确求助?哪些是违规求助? 3018940
关于积分的说明 8886010
捐赠科研通 2706400
什么是DOI,文献DOI怎么找? 1484278
科研通“疑难数据库(出版商)”最低求助积分说明 685955
邀请新用户注册赠送积分活动 681110