清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predicting forest stand attributes using the integration of airborne laser scanning and Worldview-3 data in a mixed forest in Turkey

激光扫描 遥感 环境科学 激光器 地理 光学 物理
作者
Ulaş Yunus Özkan,Tufan Demirel,İbrahim Özdemir,Serhun Sağlam,Ahmet Mert
出处
期刊:Advances in Space Research [Elsevier BV]
卷期号:69 (2): 1146-1158 被引量:4
标识
DOI:10.1016/j.asr.2021.10.049
摘要

The aim of this study is to examine the capability of the combined LiDAR/WorldView-3 data in estimating the plot-level stand attributes (stem number-N, mean diameter-D, mean height-H, basal area-BA and volume-V) in a complex forest located in the northwest of Turkey. Total 135 plots were measured to determine the forest attributes. Prediction models were developed at three levels which are: i) the general level for all stands (including all plots), ii) forest type level (coniferous forest, broad-leaved forest), and iii) tree species level (Black pine stands, Maritime pine stands, Oak stands, Mixed stands). Multiple Linear Regression (MLR) and Random Forest (RF) modelling approaches were tested to predict stand attributes. The MLR regression modelling showed that the stand attributes were estimated with R 2 ranging from 0.71 (N and V in Mixed) to 0.94 (H in Maritime pine) at tree species level, from 0.73 (BA in Broadleaved) to 0.95 (H in Conifer) at forest types level and from 0.77 (V) to 0.89 (H) at general level. The RF modelling indicated that the stand attributes were estimated with R 2 ranging from 0.69 (V in Mixed and Oak) to 0.94 (H in Maritime pine) at tree species level, from 0.72 (N in Broadleaved) to 0.95 (H in Conifer) at forest types level and from 0.81 (N and V) to 0.88 (D) at general level. The mean height had the highest prediction accuracy for almost all levels in both approaches. However, the stem number and basal area were generally estimated with the lower accuracies. The homogeneous coniferous stands provided the higher estimation accuracy than the broadleaved stands. Our results showed that the modelling approaches used here provide different performance for predicting different stand attributes. While the MLR approach performed better in estimating the stand attributes at the tree species level, the RF approach towards the general level provided higher accuracy estimation. In conclusion, the combination of aerial laser scanning and high resolution satellite data has high potential for predicting stand attributes in complex forest ecosystems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
52秒前
研友_LkD29n完成签到 ,获得积分10
1分钟前
郑阔完成签到,获得积分10
1分钟前
chenyue233完成签到,获得积分10
1分钟前
科目三应助chenyue233采纳,获得10
2分钟前
平常的德天完成签到,获得积分10
2分钟前
方白秋完成签到,获得积分0
2分钟前
2分钟前
糟糕的翅膀完成签到,获得积分10
2分钟前
糖果苏扬完成签到 ,获得积分10
3分钟前
3分钟前
Hello应助科研通管家采纳,获得10
3分钟前
小朱马发布了新的文献求助10
4分钟前
华仔应助小朱马采纳,获得10
4分钟前
4分钟前
cfy完成签到,获得积分10
4分钟前
紫熊完成签到,获得积分10
5分钟前
无花果应助科研通管家采纳,获得10
5分钟前
负责从丹完成签到,获得积分10
5分钟前
负责从丹发布了新的文献求助10
6分钟前
狂野的含烟完成签到 ,获得积分10
6分钟前
sissiarno应助科研通管家采纳,获得200
7分钟前
一盏壶完成签到,获得积分10
8分钟前
gmc完成签到 ,获得积分10
8分钟前
苗苗完成签到 ,获得积分10
8分钟前
萝卜猪完成签到,获得积分10
8分钟前
sadh2完成签到 ,获得积分10
9分钟前
leo完成签到 ,获得积分10
9分钟前
Owen应助ldtbest0525采纳,获得10
9分钟前
10分钟前
chenyue233发布了新的文献求助10
10分钟前
大医仁心完成签到 ,获得积分10
10分钟前
Chen完成签到 ,获得积分10
11分钟前
南星完成签到 ,获得积分10
11分钟前
12分钟前
迷人书蝶完成签到 ,获得积分10
12分钟前
11发布了新的文献求助30
12分钟前
12分钟前
ldtbest0525发布了新的文献求助10
12分钟前
ldtbest0525完成签到,获得积分10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5255238
求助须知:如何正确求助?哪些是违规求助? 4417869
关于积分的说明 13751833
捐赠科研通 4290825
什么是DOI,文献DOI怎么找? 2354400
邀请新用户注册赠送积分活动 1350997
关于科研通互助平台的介绍 1311445