清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predicting forest stand attributes using the integration of airborne laser scanning and Worldview-3 data in a mixed forest in Turkey

激光扫描 遥感 环境科学 激光器 地理 光学 物理
作者
Ulaş Yunus Özkan,Tufan Demirel,İbrahim Özdemir,Serhun Sağlam,Ahmet Mert
出处
期刊:Advances in Space Research [Elsevier BV]
卷期号:69 (2): 1146-1158 被引量:4
标识
DOI:10.1016/j.asr.2021.10.049
摘要

The aim of this study is to examine the capability of the combined LiDAR/WorldView-3 data in estimating the plot-level stand attributes (stem number-N, mean diameter-D, mean height-H, basal area-BA and volume-V) in a complex forest located in the northwest of Turkey. Total 135 plots were measured to determine the forest attributes. Prediction models were developed at three levels which are: i) the general level for all stands (including all plots), ii) forest type level (coniferous forest, broad-leaved forest), and iii) tree species level (Black pine stands, Maritime pine stands, Oak stands, Mixed stands). Multiple Linear Regression (MLR) and Random Forest (RF) modelling approaches were tested to predict stand attributes. The MLR regression modelling showed that the stand attributes were estimated with R 2 ranging from 0.71 (N and V in Mixed) to 0.94 (H in Maritime pine) at tree species level, from 0.73 (BA in Broadleaved) to 0.95 (H in Conifer) at forest types level and from 0.77 (V) to 0.89 (H) at general level. The RF modelling indicated that the stand attributes were estimated with R 2 ranging from 0.69 (V in Mixed and Oak) to 0.94 (H in Maritime pine) at tree species level, from 0.72 (N in Broadleaved) to 0.95 (H in Conifer) at forest types level and from 0.81 (N and V) to 0.88 (D) at general level. The mean height had the highest prediction accuracy for almost all levels in both approaches. However, the stem number and basal area were generally estimated with the lower accuracies. The homogeneous coniferous stands provided the higher estimation accuracy than the broadleaved stands. Our results showed that the modelling approaches used here provide different performance for predicting different stand attributes. While the MLR approach performed better in estimating the stand attributes at the tree species level, the RF approach towards the general level provided higher accuracy estimation. In conclusion, the combination of aerial laser scanning and high resolution satellite data has high potential for predicting stand attributes in complex forest ecosystems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mannone完成签到 ,获得积分10
4秒前
23秒前
Wjc发布了新的文献求助10
26秒前
滕皓轩完成签到 ,获得积分20
30秒前
小马甲应助Wjc采纳,获得10
37秒前
cr完成签到 ,获得积分10
46秒前
1分钟前
1分钟前
1分钟前
1分钟前
11发布了新的文献求助30
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
袁青寒发布了新的文献求助10
2分钟前
Wjc发布了新的文献求助10
2分钟前
耍酷的觅荷完成签到 ,获得积分10
3分钟前
Wjc完成签到,获得积分10
3分钟前
合不着完成签到 ,获得积分10
3分钟前
汉堡包应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
woxinyouyou完成签到,获得积分0
3分钟前
Wjc关注了科研通微信公众号
3分钟前
房天川完成签到 ,获得积分10
3分钟前
4分钟前
袁青寒发布了新的文献求助10
4分钟前
4分钟前
hgsgeospan完成签到,获得积分10
4分钟前
hgs完成签到,获得积分10
4分钟前
袁青寒发布了新的文献求助10
4分钟前
4分钟前
11发布了新的文献求助10
4分钟前
Guozixin发布了新的文献求助30
4分钟前
开朗雅霜完成签到,获得积分10
5分钟前
平安完成签到 ,获得积分10
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
虚心醉蝶完成签到 ,获得积分10
5分钟前
digger2023完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926872
求助须知:如何正确求助?哪些是违规求助? 4196392
关于积分的说明 13032658
捐赠科研通 3968788
什么是DOI,文献DOI怎么找? 2175128
邀请新用户注册赠送积分活动 1192288
关于科研通互助平台的介绍 1102741