Predicting forest stand attributes using the integration of airborne laser scanning and Worldview-3 data in a mixed forest in Turkey

激光扫描 遥感 环境科学 激光器 地理 光学 物理
作者
Ulaş Yunus Özkan,Tufan Demirel,İbrahim Özdemir,Serhun Sağlam,Ahmet Mert
出处
期刊:Advances in Space Research [Elsevier BV]
卷期号:69 (2): 1146-1158 被引量:4
标识
DOI:10.1016/j.asr.2021.10.049
摘要

The aim of this study is to examine the capability of the combined LiDAR/WorldView-3 data in estimating the plot-level stand attributes (stem number-N, mean diameter-D, mean height-H, basal area-BA and volume-V) in a complex forest located in the northwest of Turkey. Total 135 plots were measured to determine the forest attributes. Prediction models were developed at three levels which are: i) the general level for all stands (including all plots), ii) forest type level (coniferous forest, broad-leaved forest), and iii) tree species level (Black pine stands, Maritime pine stands, Oak stands, Mixed stands). Multiple Linear Regression (MLR) and Random Forest (RF) modelling approaches were tested to predict stand attributes. The MLR regression modelling showed that the stand attributes were estimated with R 2 ranging from 0.71 (N and V in Mixed) to 0.94 (H in Maritime pine) at tree species level, from 0.73 (BA in Broadleaved) to 0.95 (H in Conifer) at forest types level and from 0.77 (V) to 0.89 (H) at general level. The RF modelling indicated that the stand attributes were estimated with R 2 ranging from 0.69 (V in Mixed and Oak) to 0.94 (H in Maritime pine) at tree species level, from 0.72 (N in Broadleaved) to 0.95 (H in Conifer) at forest types level and from 0.81 (N and V) to 0.88 (D) at general level. The mean height had the highest prediction accuracy for almost all levels in both approaches. However, the stem number and basal area were generally estimated with the lower accuracies. The homogeneous coniferous stands provided the higher estimation accuracy than the broadleaved stands. Our results showed that the modelling approaches used here provide different performance for predicting different stand attributes. While the MLR approach performed better in estimating the stand attributes at the tree species level, the RF approach towards the general level provided higher accuracy estimation. In conclusion, the combination of aerial laser scanning and high resolution satellite data has high potential for predicting stand attributes in complex forest ecosystems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
huangyao完成签到,获得积分10
1秒前
1秒前
英姑应助OK不服气采纳,获得10
1秒前
2秒前
iu完成签到,获得积分10
2秒前
Jerry完成签到 ,获得积分10
2秒前
namk完成签到,获得积分10
2秒前
Yu_Chengju完成签到,获得积分10
3秒前
酷炫青烟完成签到,获得积分10
3秒前
3秒前
123455完成签到,获得积分10
4秒前
大个应助songsongsong采纳,获得10
4秒前
4秒前
CR7应助blush采纳,获得20
4秒前
悦耳人生完成签到 ,获得积分10
4秒前
洛尘完成签到,获得积分10
5秒前
石慧发布了新的文献求助10
5秒前
5秒前
火星上以柳完成签到,获得积分10
5秒前
现代山雁完成签到 ,获得积分10
5秒前
jixin发布了新的文献求助10
5秒前
Neuro_dan完成签到,获得积分0
5秒前
5秒前
内向沛槐完成签到,获得积分20
6秒前
orixero应助Lin采纳,获得10
6秒前
7秒前
lidm完成签到,获得积分10
7秒前
7秒前
7秒前
11给11的求助进行了留言
7秒前
成7完成签到,获得积分10
8秒前
热心的银耳汤完成签到 ,获得积分10
8秒前
温温发布了新的文献求助10
8秒前
kid1412完成签到,获得积分10
9秒前
苹果柜子完成签到,获得积分10
9秒前
高贵的晓筠完成签到 ,获得积分10
10秒前
王一g完成签到,获得积分10
10秒前
小兰发布了新的文献求助10
10秒前
明理萃完成签到 ,获得积分10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960404
求助须知:如何正确求助?哪些是违规求助? 3506557
关于积分的说明 11131183
捐赠科研通 3238768
什么是DOI,文献DOI怎么找? 1789884
邀请新用户注册赠送积分活动 871986
科研通“疑难数据库(出版商)”最低求助积分说明 803118