亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and Validation of an Artificial Intelligence–Powered Platform for Prostate Cancer Grading and Quantification

前列腺癌 分级(工程) 医学 前列腺 活检 医学物理学 前列腺活检 癌症 妇科 放射科 内科学 工程类 土木工程
作者
Wei Huang,Ramandeep S. Randhawa,Parag Jain,Kenneth A. Iczkowski,Rong Hu,Samuel Hubbard,Jens C. Eickhoff,Hirak S. Basu,Rajat Roy
出处
期刊:JAMA network open [American Medical Association]
卷期号:4 (11): e2132554-e2132554 被引量:37
标识
DOI:10.1001/jamanetworkopen.2021.32554
摘要

The Gleason grading system has been the most reliable tool for the prognosis of prostate cancer since its development. However, its clinical application remains limited by interobserver variability in grading and quantification, which has negative consequences for risk assessment and clinical management of prostate cancer.To examine the impact of an artificial intelligence (AI)-assisted approach to prostate cancer grading and quantification.This diagnostic study was conducted at the University of Wisconsin-Madison from August 2, 2017, to December 30, 2019. The study chronologically selected 589 men with biopsy-confirmed prostate cancer who received care in the University of Wisconsin Health System between January 1, 2005, and February 28, 2017. A total of 1000 biopsy slides (1 or 2 slides per patient) were selected and scanned to create digital whole-slide images, which were used to develop and validate a deep convolutional neural network-based AI-powered platform. The whole-slide images were divided into a training set (n = 838) and validation set (n = 162). Three experienced academic urological pathologists (W.H., K.A.I., and R.H., hereinafter referred to as pathologists 1, 2, and 3, respectively) were involved in the validation. Data were collected between December 29, 2018, and December 20, 2019, and analyzed from January 4, 2020, to March 1, 2021.Accuracy of prostate cancer detection by the AI-powered platform and comparison of prostate cancer grading and quantification performed by the 3 pathologists using manual vs AI-assisted methods.Among 589 men with biopsy slides, the mean (SD) age was 63.8 (8.2) years, the mean (SD) prebiopsy prostate-specific antigen level was 10.2 (16.2) ng/mL, and the mean (SD) total cancer volume was 15.4% (20.1%). The AI system was able to distinguish prostate cancer from benign prostatic epithelium and stroma with high accuracy at the patch-pixel level, with an area under the receiver operating characteristic curve of 0.92 (95% CI, 0.88-0.95). The AI system achieved almost perfect agreement with the training pathologist (pathologist 1) in detecting prostate cancer at the patch-pixel level (weighted κ = 0.97; asymptotic 95% CI, 0.96-0.98) and in grading prostate cancer at the slide level (weighted κ = 0.98; asymptotic 95% CI, 0.96-1.00). Use of the AI-assisted method was associated with significant improvements in the concordance of prostate cancer grading and quantification between the 3 pathologists (eg, pathologists 1 and 2: 90.1% agreement using AI-assisted method vs 84.0% agreement using manual method; P < .001) and significantly higher weighted κ values for all pathologists (eg, pathologists 2 and 3: weighted κ = 0.92 [asymptotic 95% CI, 0.90-0.94] for AI-assisted method vs 0.76 [asymptotic 95% CI, 0.71-0.80] for manual method; P < .001) compared with the manual method.In this diagnostic study, an AI-powered platform was able to detect, grade, and quantify prostate cancer with high accuracy and efficiency and was associated with significant reductions in interobserver variability. These results suggest that an AI-powered platform could potentially transform histopathological evaluation and improve risk stratification and clinical management of prostate cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
48秒前
粥粥舟发布了新的文献求助10
55秒前
SciGPT应助科研通管家采纳,获得10
58秒前
吱吱草莓派完成签到 ,获得积分10
1分钟前
bdsb完成签到,获得积分10
1分钟前
852应助蔡俊辉采纳,获得10
1分钟前
bamboo完成签到 ,获得积分10
1分钟前
LZHWSND完成签到,获得积分10
2分钟前
2分钟前
大个应助粥粥舟采纳,获得10
3分钟前
科研通AI2S应助科研小刘采纳,获得10
3分钟前
cy0824完成签到 ,获得积分10
4分钟前
1437594843完成签到 ,获得积分10
4分钟前
4分钟前
希夷发布了新的文献求助10
4分钟前
5分钟前
5分钟前
李爱国应助希夷采纳,获得10
5分钟前
搞怪人杰发布了新的文献求助10
5分钟前
5分钟前
希夷发布了新的文献求助10
5分钟前
希夷完成签到,获得积分10
5分钟前
科研通AI2S应助疯狂的红牛采纳,获得10
6分钟前
6分钟前
东方傲儿发布了新的文献求助10
6分钟前
不胜玖完成签到 ,获得积分10
7分钟前
农学小王完成签到 ,获得积分10
8分钟前
8分钟前
8分钟前
moodlunatic发布了新的文献求助30
8分钟前
9分钟前
9分钟前
Crema发布了新的文献求助30
10分钟前
10分钟前
ZACK完成签到 ,获得积分10
10分钟前
隐形曼青应助天才小熊猫采纳,获得10
10分钟前
10分钟前
10分钟前
moodlunatic完成签到,获得积分20
11分钟前
英俊的铭应助cao采纳,获得10
11分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142692
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7806965
捐赠科研通 2449831
什么是DOI,文献DOI怎么找? 1303518
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601328