MCRNet: Multi-level context refinement network for semantic segmentation in breast ultrasound imaging

计算机科学 编码器 分割 人工智能 棱锥(几何) 背景(考古学) 卷积神经网络 块(置换群论) 特征(语言学) 模式识别(心理学) 计算机视觉 物理 哲学 光学 古生物学 操作系统 生物 语言学 数学 几何学
作者
Meng Lou,Jie Meng,Yunliang Qi,Xiaorong Li,Yide Ma
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:470: 154-169 被引量:24
标识
DOI:10.1016/j.neucom.2021.10.102
摘要

Automated semantic segmentation in breast ultrasound imaging remains a challenging task due to the adverse impacts of poor contrast, indistinct target boundaries, and a large number of shadows. Recently, convolutional neural networks (CNN) with U-shape have demonstrated considerable performance in medical image segmentation. However, classic U-shaped networks suffer from the potential semantic gaps due to the incompatibility of encoder and decoder features, thereby resulting in sub-optimal semantic segmentation performance in ultrasound imaging. In this work, we focus on improving the U-shaped CNN through adaptively reducing semantic gaps and enhancing contextual relationships between encoder and decoder features. Specifically, we propose two lightweight yet effective context refinement blocks including inverted residual pyramid block (IRPB) and context-aware fusion block (CFB). The former can selectively extract multi-scale semantic representations according to input features, aiming to adaptively reduce semantic gaps between encoder and decoder features. The latter can exploit semantic interactions of inter-features to enhance contextual correlations between the encoder and the decoder, aiming at improving the feature fusion scheme of low- and high-level features. Further, we develop a novel multi-level context refinement network (MCRNet) by seamlessly plugging these two context refinement blocks into an encoder-decoder architecture according to the multi-level manner, thereby achieving fully automated semantic segmentation in ultrasound imaging. In order to objectively validate the proposed method, we carry out extensive qualitative and quantitative analyses based on two publicly available breast ultrasound databases including BUSI and UDIAT. The experimental results greatly reflect the efficacy of our proposed method. Meanwhile, compared with nine state-of-the-art semantic segmentation methods, our proposed MCRNet also achieves superior performance while persevering fine computational efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AI完成签到,获得积分10
1秒前
搞怪网络发布了新的文献求助10
2秒前
daihq3完成签到,获得积分10
2秒前
2秒前
周少完成签到,获得积分10
4秒前
fst完成签到,获得积分10
6秒前
万能图书馆应助小心科研采纳,获得10
6秒前
老王完成签到,获得积分10
6秒前
7秒前
乐乐应助obcx采纳,获得10
8秒前
CipherSage应助科研雪瑞采纳,获得10
9秒前
坛子完成签到,获得积分10
10秒前
11秒前
奕初阳发布了新的文献求助10
11秒前
12秒前
cdercder应助光亮机器猫采纳,获得30
12秒前
13秒前
执源星关注了科研通微信公众号
13秒前
13秒前
13秒前
komisan完成签到 ,获得积分10
14秒前
华仔应助沉默的幻枫采纳,获得10
15秒前
威武豌豆发布了新的文献求助20
16秒前
山乞凡完成签到 ,获得积分10
17秒前
17秒前
17秒前
充电宝应助小心科研采纳,获得10
18秒前
毕业发布了新的文献求助10
18秒前
寒子川完成签到,获得积分20
21秒前
ding应助威武豌豆采纳,获得20
22秒前
23秒前
ding应助minute采纳,获得10
24秒前
赘婿应助t421788416采纳,获得10
26秒前
毕业完成签到,获得积分20
27秒前
28秒前
glomming完成签到,获得积分10
31秒前
orixero应助杨杨杨采纳,获得10
32秒前
我是老大应助毕业采纳,获得10
32秒前
32秒前
沉默的幻枫给沉默的幻枫的求助进行了留言
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672384
求助须知:如何正确求助?哪些是违规求助? 3228736
关于积分的说明 9781794
捐赠科研通 2939160
什么是DOI,文献DOI怎么找? 1610638
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174