MCRNet: Multi-level context refinement network for semantic segmentation in breast ultrasound imaging

计算机科学 编码器 分割 人工智能 棱锥(几何) 背景(考古学) 卷积神经网络 块(置换群论) 特征(语言学) 模式识别(心理学) 计算机视觉 物理 哲学 光学 古生物学 操作系统 生物 语言学 数学 几何学
作者
Meng Lou,Jie Meng,Yunliang Qi,Xiaorong Li,Yide Ma
出处
期刊:Neurocomputing [Elsevier]
卷期号:470: 154-169 被引量:24
标识
DOI:10.1016/j.neucom.2021.10.102
摘要

Automated semantic segmentation in breast ultrasound imaging remains a challenging task due to the adverse impacts of poor contrast, indistinct target boundaries, and a large number of shadows. Recently, convolutional neural networks (CNN) with U-shape have demonstrated considerable performance in medical image segmentation. However, classic U-shaped networks suffer from the potential semantic gaps due to the incompatibility of encoder and decoder features, thereby resulting in sub-optimal semantic segmentation performance in ultrasound imaging. In this work, we focus on improving the U-shaped CNN through adaptively reducing semantic gaps and enhancing contextual relationships between encoder and decoder features. Specifically, we propose two lightweight yet effective context refinement blocks including inverted residual pyramid block (IRPB) and context-aware fusion block (CFB). The former can selectively extract multi-scale semantic representations according to input features, aiming to adaptively reduce semantic gaps between encoder and decoder features. The latter can exploit semantic interactions of inter-features to enhance contextual correlations between the encoder and the decoder, aiming at improving the feature fusion scheme of low- and high-level features. Further, we develop a novel multi-level context refinement network (MCRNet) by seamlessly plugging these two context refinement blocks into an encoder-decoder architecture according to the multi-level manner, thereby achieving fully automated semantic segmentation in ultrasound imaging. In order to objectively validate the proposed method, we carry out extensive qualitative and quantitative analyses based on two publicly available breast ultrasound databases including BUSI and UDIAT. The experimental results greatly reflect the efficacy of our proposed method. Meanwhile, compared with nine state-of-the-art semantic segmentation methods, our proposed MCRNet also achieves superior performance while persevering fine computational efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
席松发布了新的文献求助10
1秒前
安全网123完成签到,获得积分10
1秒前
钱多多应助郭玉强采纳,获得200
1秒前
CL发布了新的文献求助10
1秒前
Rachel发布了新的文献求助10
2秒前
研友_ZA2jm8发布了新的文献求助10
3秒前
3秒前
宿刚完成签到,获得积分20
5秒前
搜集达人应助yueyue采纳,获得10
5秒前
平淡惋清发布了新的文献求助10
5秒前
5秒前
mulidexin2021发布了新的文献求助10
6秒前
7秒前
热心山雁发布了新的文献求助10
7秒前
雷大帅发布了新的文献求助10
7秒前
熙慕完成签到 ,获得积分10
9秒前
zs完成签到 ,获得积分10
9秒前
11秒前
zyj完成签到,获得积分10
12秒前
芸沐发布了新的文献求助10
13秒前
13508104971发布了新的文献求助10
13秒前
13秒前
15秒前
可爱的愚志完成签到,获得积分20
15秒前
17秒前
18秒前
19秒前
wuya完成签到,获得积分10
20秒前
Yang发布了新的文献求助10
20秒前
季夏完成签到,获得积分10
20秒前
20秒前
21秒前
21秒前
EvilPeas发布了新的文献求助10
22秒前
李健的粉丝团团长应助cm采纳,获得10
22秒前
yueyue发布了新的文献求助10
23秒前
嘿嘿发布了新的文献求助10
24秒前
25秒前
bababaaa发布了新的文献求助10
25秒前
26秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155941
求助须知:如何正确求助?哪些是违规求助? 2807235
关于积分的说明 7872173
捐赠科研通 2465563
什么是DOI,文献DOI怎么找? 1312264
科研通“疑难数据库(出版商)”最低求助积分说明 629977
版权声明 601905