MCRNet: Multi-level context refinement network for semantic segmentation in breast ultrasound imaging

计算机科学 编码器 分割 人工智能 棱锥(几何) 背景(考古学) 卷积神经网络 块(置换群论) 特征(语言学) 模式识别(心理学) 计算机视觉 物理 哲学 光学 古生物学 操作系统 生物 语言学 数学 几何学
作者
Meng Lou,Jie Meng,Yunliang Qi,Xiaorong Li,Yide Ma
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:470: 154-169 被引量:24
标识
DOI:10.1016/j.neucom.2021.10.102
摘要

Automated semantic segmentation in breast ultrasound imaging remains a challenging task due to the adverse impacts of poor contrast, indistinct target boundaries, and a large number of shadows. Recently, convolutional neural networks (CNN) with U-shape have demonstrated considerable performance in medical image segmentation. However, classic U-shaped networks suffer from the potential semantic gaps due to the incompatibility of encoder and decoder features, thereby resulting in sub-optimal semantic segmentation performance in ultrasound imaging. In this work, we focus on improving the U-shaped CNN through adaptively reducing semantic gaps and enhancing contextual relationships between encoder and decoder features. Specifically, we propose two lightweight yet effective context refinement blocks including inverted residual pyramid block (IRPB) and context-aware fusion block (CFB). The former can selectively extract multi-scale semantic representations according to input features, aiming to adaptively reduce semantic gaps between encoder and decoder features. The latter can exploit semantic interactions of inter-features to enhance contextual correlations between the encoder and the decoder, aiming at improving the feature fusion scheme of low- and high-level features. Further, we develop a novel multi-level context refinement network (MCRNet) by seamlessly plugging these two context refinement blocks into an encoder-decoder architecture according to the multi-level manner, thereby achieving fully automated semantic segmentation in ultrasound imaging. In order to objectively validate the proposed method, we carry out extensive qualitative and quantitative analyses based on two publicly available breast ultrasound databases including BUSI and UDIAT. The experimental results greatly reflect the efficacy of our proposed method. Meanwhile, compared with nine state-of-the-art semantic segmentation methods, our proposed MCRNet also achieves superior performance while persevering fine computational efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淇淇完成签到,获得积分10
2秒前
闾丘明雪发布了新的文献求助10
2秒前
2秒前
科研通AI2S应助拔丝香芋采纳,获得30
3秒前
十六发布了新的文献求助10
4秒前
5秒前
Allergy完成签到,获得积分20
6秒前
新疆彭于晏完成签到,获得积分20
7秒前
7秒前
开放飞阳完成签到 ,获得积分10
7秒前
小鱼儿发布了新的文献求助10
9秒前
9秒前
plain发布了新的文献求助10
10秒前
10秒前
科研通AI5应助ZXC采纳,获得10
11秒前
11秒前
wwl完成签到,获得积分10
12秒前
FashionBoy应助十六采纳,获得10
12秒前
念姬发布了新的文献求助10
14秒前
小二郎应助新疆彭于晏采纳,获得10
14秒前
挽风风风风完成签到,获得积分10
15秒前
15秒前
药小隐发布了新的文献求助10
16秒前
Djnsbj发布了新的文献求助10
17秒前
香雪若梅完成签到 ,获得积分10
18秒前
18秒前
18秒前
18秒前
tym完成签到,获得积分10
19秒前
21秒前
lll发布了新的文献求助10
21秒前
Levin发布了新的文献求助10
21秒前
ei123应助能干宛秋采纳,获得30
22秒前
22秒前
漂亮的人人人完成签到 ,获得积分10
22秒前
23秒前
ldx发布了新的文献求助10
23秒前
酷波er应助SSS水鱼采纳,获得30
23秒前
领导范儿应助YUN采纳,获得30
24秒前
慕青应助笑傲江湖采纳,获得10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966468
求助须知:如何正确求助?哪些是违规求助? 3511990
关于积分的说明 11161200
捐赠科研通 3246780
什么是DOI,文献DOI怎么找? 1793495
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804420