A review of multimodal image matching: Methods and applications

计算机科学 匹配(统计) 人工智能 模式 领域(数学) 点集注册 模态(人机交互) 深度学习 特征匹配 特征(语言学) 航程(航空) 计算机视觉 模式识别(心理学) 点(几何) 图像(数学) 数学 统计 哲学 社会学 语言学 复合材料 社会科学 材料科学 纯数学 几何学
作者
Xingyu Jiang,Jiayi Ma,Guobao Xiao,Zhenfeng Shao,Xiaojie Guo
出处
期刊:Information Fusion [Elsevier]
卷期号:73: 22-71 被引量:293
标识
DOI:10.1016/j.inffus.2021.02.012
摘要

Multimodal image matching, which refers to identifying and then corresponding the same or similar structure/content from two or more images that are of significant modalities or nonlinear appearance difference, is a fundamental and critical problem in a wide range of applications, including medical, remote sensing and computer vision. An increasing number and diversity of methods have been proposed over the past decades, particularly in this deep learning era, due to the challenges in eliminating modality variance and geometrical deformation that intrinsically exist in multimodal image matching. However, a comprehensive review and analysis of traditional and recent trainable methods and their applications in different research fields are lacking. To this end and in this survey, we first introduce two general frameworks, saying area- and feature-based, in terms of their core components, taxonomy, and procedure details. Second, we provide a comprehensive review of multimodal image matching methods from handcrafted to deep methods for each research field according to their imaging nature, including medical, remote sensing and computer vision. Extensive experimental comparisons of interest point detection, description and matching, and image registration are performed on various datasets containing common types of multimodal image pairs that we collected and annotated. Finally, we briefly introduce and analyze several typical applications to reveal the significance of multimodal image matching and provide insightful discussions and conclusions to these multimodal image matching approaches, and simultaneously deliver their future trends for researchers and engineers in related research areas to achieve further breakthroughs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗霄山发布了新的文献求助10
1秒前
zkkz完成签到,获得积分10
2秒前
领导范儿应助12345采纳,获得10
4秒前
4秒前
yejunjie1发布了新的文献求助10
5秒前
anananan发布了新的文献求助20
6秒前
星辰大海应助CL采纳,获得10
8秒前
来自3602完成签到,获得积分10
9秒前
ding应助考拉采纳,获得10
9秒前
10秒前
11秒前
结实的啤酒完成签到 ,获得积分10
12秒前
mol发布了新的文献求助10
13秒前
小黑猴ps完成签到,获得积分10
14秒前
肚子圆圆的完成签到 ,获得积分10
17秒前
研友_ZAxX6n发布了新的文献求助10
17秒前
17秒前
niu完成签到,获得积分10
18秒前
18秒前
18秒前
CARL发布了新的文献求助10
19秒前
陈鹿华完成签到,获得积分10
20秒前
21秒前
22秒前
987654发布了新的文献求助10
24秒前
24秒前
EdwardKING发布了新的文献求助10
24秒前
24秒前
25秒前
25秒前
张涛完成签到 ,获得积分10
25秒前
CARL完成签到,获得积分10
26秒前
26秒前
Mengqi发布了新的文献求助10
29秒前
小鳄鱼爱洗澡完成签到,获得积分10
29秒前
30秒前
30秒前
song完成签到,获得积分10
30秒前
7Steven7完成签到 ,获得积分10
32秒前
CINDY发布了新的文献求助10
32秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141401
求助须知:如何正确求助?哪些是违规求助? 2792423
关于积分的说明 7802495
捐赠科研通 2448598
什么是DOI,文献DOI怎么找? 1302633
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237