败血症
巨噬细胞极化
炎症
药理学
M2巨噬细胞
巨噬细胞
医学
肌酸激酶
免疫学
化学
内科学
生物化学
体外
作者
Jiafan Feng,Zhijun Liu,Chen Hang,Mengning Zhang,Xiaochun Ma,Qiang Han,Dezhao Lu,Cui Wang
标识
DOI:10.1016/j.ejphar.2021.174522
摘要
Cynaroside is the primary flavonoid component of honeysuckle which has been widely used as Chinese traditional medicine given its anti-inflammation properties. Overactive systemic inflammatory response and multi-organ injury are the leading causes of life-threatening sepsis. Regulation of macrophage polarization balance may act as a promising strategy for its treatment. In the present study, we aimed to investigate whether cynaroside exerted protective effects against sepsis and its potential mechanism. Building upon a sepsis mouse model, we observed cynaroside alleviated serum levels of inflammatory factors including IL-1β and TNF-α at 5 and 10 mg/kg. The pathological injury of heart, kidney and lung was remarkedly attenuated as the levels of blood urea nitrogen, creatinine, creatine kinase-MB and lactate dehydrogenase were reduced nearly 2.8-, 2.7-, 2.4-, and 2.5-fold as compared with the sepsis mice, respectively. We further demonstrated cynaroside suppressed the biomarker of pro-inflammatory macrophage M1 phenotype (iNOS+) and promotes the anti-inflammatory M2 polarization (CD206+) in the injury organs of septic mice. Mechanistic research verified cynaroside inhibited LPS-induced polarization of macrophage into M1 phenotype, which can be highly blocked by Nrf2 inhibitor. Expectedly, Nrf2 and its downstream (Heme oxygenase-1 (HO-1)) was upregulated in injury organs after treating with cynaroside, indicating the involvement of Nrf2 signaling. Taken together, the data claims cynaroside ameliorated systematic inflammation and multi-organ injury dependent on Nrf2/HO-1 pathway in septic mice.
科研通智能强力驱动
Strongly Powered by AbleSci AI