Metabolic network-based identification of plasma markers for non-small cell lung cancer

代谢网络 小桶 代谢组学 计算生物学 代谢途径 生物 生物信息学 生物化学 基因 转录组 基因表达
作者
Linling Guo,Linrui Li,Zhiyun Xu,Fanchen Meng,Huimin Guo,Peijia Liu,Peifang Liu,Yuan Tian,Fengguo Xu,Zunjian Zhang,Shuai Zhang,Yin Huang
出处
期刊:Analytical and Bioanalytical Chemistry [Springer Nature]
卷期号:413 (30): 7421-7430 被引量:9
标识
DOI:10.1007/s00216-021-03699-5
摘要

Metabolic markers, offering sensitive information on biological dysfunction, play important roles in diagnosing and treating cancers. However, the discovery of effective markers is limited by the lack of well-established metabolite selection approaches. Here, we propose a network-based strategy to uncover the metabolic markers with potential clinical availability for non-small cell lung cancer (NSCLC). First, an integrated mass spectrometry-based untargeted metabolomics was used to profile the plasma samples from 43 NSCLC patients and 43 healthy controls. We found that a series of 39 metabolites were altered significantly. Relying on the human metabolic network assembled from Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we mapped these differential metabolites to the network and constructed an NSCLC-related disease module containing 23 putative metabolic markers. By measuring the PageRank centrality of molecules in this module, we computationally evaluated the network-based importance of the 23 metabolites and demonstrated that the metabolism pathways of aromatic amino acids and long-chain fatty acids provided potential molecular targets of NSCLC (i.e., IL4l1 and ACOT2). Combining network-based ranking and support-vector machine modeling, we further found a panel of eight metabolites (i.e., pyruvate, tryptophan, and palmitic acid) that showed a high capability to differentiate patients from controls (accuracy > 97.7%). In summary, we present a meaningful network method for metabolic marker discovery and have identified eight strong candidate metabolites for NSCLC diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pw完成签到,获得积分10
刚刚
Jack80发布了新的文献求助200
1秒前
1秒前
2秒前
Ava应助zhou采纳,获得30
2秒前
归去来兮完成签到,获得积分10
4秒前
怡然芷蝶完成签到,获得积分10
6秒前
weing发布了新的文献求助10
7秒前
所所应助zxh采纳,获得10
7秒前
liao_duoduo完成签到,获得积分10
9秒前
云帆完成签到,获得积分10
9秒前
所所应助朝阳满意采纳,获得10
9秒前
科研通AI6应助weing采纳,获得30
11秒前
蓝天发布了新的文献求助10
13秒前
13秒前
王王的狗子完成签到 ,获得积分10
14秒前
知愈完成签到,获得积分10
16秒前
梁jj发布了新的文献求助10
17秒前
cassie完成签到,获得积分10
17秒前
18秒前
19秒前
19秒前
23秒前
朝阳满意发布了新的文献求助10
23秒前
知愈发布了新的文献求助10
24秒前
danggui完成签到,获得积分10
26秒前
幽默的煎饼发布了新的文献求助100
26秒前
Diane发布了新的文献求助10
26秒前
小巧寻桃发布了新的文献求助10
27秒前
dream完成签到 ,获得积分10
27秒前
加油发布了新的文献求助10
27秒前
脑洞疼应助冷酷莫言采纳,获得10
27秒前
29秒前
32秒前
海洋完成签到,获得积分10
32秒前
团子完成签到,获得积分10
33秒前
Lucas应助十一采纳,获得10
33秒前
zhongyinanke发布了新的文献求助50
34秒前
lele发布了新的文献求助10
34秒前
华仔应助小巧寻桃采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560490
求助须知:如何正确求助?哪些是违规求助? 4645747
关于积分的说明 14676028
捐赠科研通 4586936
什么是DOI,文献DOI怎么找? 2516635
邀请新用户注册赠送积分活动 1490182
关于科研通互助平台的介绍 1461055