Metabolic network-based identification of plasma markers for non-small cell lung cancer

代谢网络 小桶 代谢组学 计算生物学 代谢途径 生物 生物信息学 生物化学 基因 转录组 基因表达
作者
Linling Guo,Linrui Li,Zhiyun Xu,Fanchen Meng,Huimin Guo,Peijia Liu,Peifang Liu,Yuan Tian,Fengguo Xu,Zunjian Zhang,Shuai Zhang,Yin Huang
出处
期刊:Analytical and Bioanalytical Chemistry [Springer Science+Business Media]
卷期号:413 (30): 7421-7430 被引量:9
标识
DOI:10.1007/s00216-021-03699-5
摘要

Metabolic markers, offering sensitive information on biological dysfunction, play important roles in diagnosing and treating cancers. However, the discovery of effective markers is limited by the lack of well-established metabolite selection approaches. Here, we propose a network-based strategy to uncover the metabolic markers with potential clinical availability for non-small cell lung cancer (NSCLC). First, an integrated mass spectrometry-based untargeted metabolomics was used to profile the plasma samples from 43 NSCLC patients and 43 healthy controls. We found that a series of 39 metabolites were altered significantly. Relying on the human metabolic network assembled from Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we mapped these differential metabolites to the network and constructed an NSCLC-related disease module containing 23 putative metabolic markers. By measuring the PageRank centrality of molecules in this module, we computationally evaluated the network-based importance of the 23 metabolites and demonstrated that the metabolism pathways of aromatic amino acids and long-chain fatty acids provided potential molecular targets of NSCLC (i.e., IL4l1 and ACOT2). Combining network-based ranking and support-vector machine modeling, we further found a panel of eight metabolites (i.e., pyruvate, tryptophan, and palmitic acid) that showed a high capability to differentiate patients from controls (accuracy > 97.7%). In summary, we present a meaningful network method for metabolic marker discovery and have identified eight strong candidate metabolites for NSCLC diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汪汪发布了新的文献求助10
1秒前
1秒前
roclie完成签到,获得积分10
1秒前
文静的如娆完成签到,获得积分10
2秒前
3秒前
Yy完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
dengyan完成签到,获得积分10
6秒前
CodeCraft应助汪汪采纳,获得10
6秒前
我是老大应助刻苦的书竹采纳,获得10
7秒前
智慧爷爷发布了新的文献求助10
7秒前
酷波er应助lw777采纳,获得10
7秒前
岁月如歌发布了新的文献求助10
9秒前
bin完成签到,获得积分10
11秒前
11秒前
很好完成签到,获得积分10
12秒前
小郝已读博完成签到 ,获得积分10
12秒前
12秒前
Self-made完成签到,获得积分10
12秒前
13秒前
14秒前
15秒前
岁月如歌完成签到,获得积分10
16秒前
17秒前
joey完成签到,获得积分10
18秒前
wei完成签到 ,获得积分10
19秒前
miaojuly发布了新的文献求助10
20秒前
20秒前
研友_LXjjOZ发布了新的文献求助150
20秒前
21秒前
22秒前
23秒前
坚定馒头完成签到,获得积分10
23秒前
24秒前
24秒前
星星应助科研通管家采纳,获得30
26秒前
y924758705完成签到,获得积分20
26秒前
打打应助科研通管家采纳,获得10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988868
求助须知:如何正确求助?哪些是违规求助? 3531255
关于积分的说明 11253071
捐赠科研通 3269858
什么是DOI,文献DOI怎么找? 1804822
邀请新用户注册赠送积分活动 881994
科研通“疑难数据库(出版商)”最低求助积分说明 809035