已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Metabolic network-based identification of plasma markers for non-small cell lung cancer

代谢网络 小桶 代谢组学 计算生物学 代谢途径 生物 生物信息学 生物化学 基因 转录组 基因表达
作者
Linling Guo,Linrui Li,Zhiyun Xu,Fanchen Meng,Huimin Guo,Peijia Liu,Peifang Liu,Yuan Tian,Fengguo Xu,Zunjian Zhang,Shuai Zhang,Yin Huang
出处
期刊:Analytical and Bioanalytical Chemistry [Springer Nature]
卷期号:413 (30): 7421-7430 被引量:9
标识
DOI:10.1007/s00216-021-03699-5
摘要

Metabolic markers, offering sensitive information on biological dysfunction, play important roles in diagnosing and treating cancers. However, the discovery of effective markers is limited by the lack of well-established metabolite selection approaches. Here, we propose a network-based strategy to uncover the metabolic markers with potential clinical availability for non-small cell lung cancer (NSCLC). First, an integrated mass spectrometry-based untargeted metabolomics was used to profile the plasma samples from 43 NSCLC patients and 43 healthy controls. We found that a series of 39 metabolites were altered significantly. Relying on the human metabolic network assembled from Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we mapped these differential metabolites to the network and constructed an NSCLC-related disease module containing 23 putative metabolic markers. By measuring the PageRank centrality of molecules in this module, we computationally evaluated the network-based importance of the 23 metabolites and demonstrated that the metabolism pathways of aromatic amino acids and long-chain fatty acids provided potential molecular targets of NSCLC (i.e., IL4l1 and ACOT2). Combining network-based ranking and support-vector machine modeling, we further found a panel of eight metabolites (i.e., pyruvate, tryptophan, and palmitic acid) that showed a high capability to differentiate patients from controls (accuracy > 97.7%). In summary, we present a meaningful network method for metabolic marker discovery and have identified eight strong candidate metabolites for NSCLC diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶逸豪完成签到,获得积分10
刚刚
1秒前
天天快乐应助洋洋采纳,获得10
2秒前
3秒前
3秒前
迅速大白完成签到 ,获得积分10
4秒前
wenqing完成签到,获得积分10
5秒前
一只橙子完成签到,获得积分10
6秒前
6秒前
7秒前
没烦恼完成签到,获得积分10
7秒前
8秒前
宋正平完成签到,获得积分10
9秒前
cooldog1130发布了新的文献求助30
9秒前
汤雄发布了新的文献求助10
10秒前
11秒前
11秒前
彭于晏应助宝儿糯采纳,获得10
11秒前
科研通AI6应助terryok采纳,获得10
11秒前
11秒前
龙仔完成签到 ,获得积分10
13秒前
科研通AI6应助kuankuan采纳,获得10
13秒前
14秒前
14秒前
YYY完成签到 ,获得积分10
15秒前
xiu-er完成签到,获得积分10
15秒前
cy发布了新的文献求助10
17秒前
田様应助jack采纳,获得10
17秒前
诱导效应发布了新的文献求助10
18秒前
18秒前
19秒前
反方向的钟完成签到,获得积分10
20秒前
彭于晏应助kuankuan采纳,获得10
20秒前
22秒前
洋洋发布了新的文献求助10
22秒前
23秒前
诱导效应完成签到,获得积分10
24秒前
xy发布了新的文献求助10
25秒前
terryok发布了新的文献求助30
25秒前
12345发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407319
求助须知:如何正确求助?哪些是违规求助? 4524882
关于积分的说明 14100348
捐赠科研通 4438702
什么是DOI,文献DOI怎么找? 2436454
邀请新用户注册赠送积分活动 1428436
关于科研通互助平台的介绍 1406470