Metabolic network-based identification of plasma markers for non-small cell lung cancer

代谢网络 小桶 代谢组学 计算生物学 代谢途径 生物 生物信息学 生物化学 基因 转录组 基因表达
作者
Linling Guo,Linrui Li,Zhiyun Xu,Fanchen Meng,Huimin Guo,Peijia Liu,Peifang Liu,Yuan Tian,Fengguo Xu,Zunjian Zhang,Shuai Zhang,Yin Huang
出处
期刊:Analytical and Bioanalytical Chemistry [Springer Nature]
卷期号:413 (30): 7421-7430 被引量:9
标识
DOI:10.1007/s00216-021-03699-5
摘要

Metabolic markers, offering sensitive information on biological dysfunction, play important roles in diagnosing and treating cancers. However, the discovery of effective markers is limited by the lack of well-established metabolite selection approaches. Here, we propose a network-based strategy to uncover the metabolic markers with potential clinical availability for non-small cell lung cancer (NSCLC). First, an integrated mass spectrometry-based untargeted metabolomics was used to profile the plasma samples from 43 NSCLC patients and 43 healthy controls. We found that a series of 39 metabolites were altered significantly. Relying on the human metabolic network assembled from Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we mapped these differential metabolites to the network and constructed an NSCLC-related disease module containing 23 putative metabolic markers. By measuring the PageRank centrality of molecules in this module, we computationally evaluated the network-based importance of the 23 metabolites and demonstrated that the metabolism pathways of aromatic amino acids and long-chain fatty acids provided potential molecular targets of NSCLC (i.e., IL4l1 and ACOT2). Combining network-based ranking and support-vector machine modeling, we further found a panel of eight metabolites (i.e., pyruvate, tryptophan, and palmitic acid) that showed a high capability to differentiate patients from controls (accuracy > 97.7%). In summary, we present a meaningful network method for metabolic marker discovery and have identified eight strong candidate metabolites for NSCLC diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由小土豆完成签到,获得积分10
刚刚
123完成签到,获得积分10
1秒前
ddly完成签到,获得积分10
1秒前
天天快乐应助爱狗人士Hito采纳,获得10
1秒前
LLC发布了新的文献求助10
2秒前
cis2014发布了新的文献求助10
2秒前
春树爱学术完成签到,获得积分10
2秒前
Akim应助郗栗采纳,获得10
2秒前
2秒前
2秒前
11完成签到 ,获得积分10
3秒前
李思洋发布了新的文献求助10
3秒前
施耐德发布了新的文献求助10
3秒前
欧阳万仇发布了新的文献求助10
4秒前
4秒前
pharmac完成签到,获得积分10
4秒前
打打应助奔奔采纳,获得10
4秒前
5秒前
木南完成签到,获得积分20
5秒前
sun0115完成签到 ,获得积分10
5秒前
lyp完成签到 ,获得积分10
5秒前
玄远完成签到,获得积分10
5秒前
影像组学完成签到,获得积分10
6秒前
ZZICU完成签到,获得积分10
6秒前
苏雨发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
smile完成签到,获得积分10
8秒前
111完成签到,获得积分10
8秒前
8秒前
8秒前
酷波er应助move采纳,获得10
9秒前
lucky完成签到 ,获得积分10
9秒前
孤独巡礼完成签到,获得积分10
9秒前
an发布了新的文献求助10
10秒前
隐形曼青应助哒丝萌德采纳,获得10
10秒前
fleeting发布了新的文献求助10
10秒前
bmhs2017应助粥粥爱糊糊采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396060
求助须知:如何正确求助?哪些是违规求助? 4516445
关于积分的说明 14059685
捐赠科研通 4428359
什么是DOI,文献DOI怎么找? 2432060
邀请新用户注册赠送积分活动 1424236
关于科研通互助平台的介绍 1403472