Metabolic network-based identification of plasma markers for non-small cell lung cancer

代谢网络 小桶 代谢组学 计算生物学 代谢途径 生物 生物信息学 生物化学 基因 转录组 基因表达
作者
Linling Guo,Linrui Li,Zhiyun Xu,Fanchen Meng,Huimin Guo,Peijia Liu,Peifang Liu,Yuan Tian,Fengguo Xu,Zunjian Zhang,Shuai Zhang,Yin Huang
出处
期刊:Analytical and Bioanalytical Chemistry [Springer Nature]
卷期号:413 (30): 7421-7430 被引量:9
标识
DOI:10.1007/s00216-021-03699-5
摘要

Metabolic markers, offering sensitive information on biological dysfunction, play important roles in diagnosing and treating cancers. However, the discovery of effective markers is limited by the lack of well-established metabolite selection approaches. Here, we propose a network-based strategy to uncover the metabolic markers with potential clinical availability for non-small cell lung cancer (NSCLC). First, an integrated mass spectrometry-based untargeted metabolomics was used to profile the plasma samples from 43 NSCLC patients and 43 healthy controls. We found that a series of 39 metabolites were altered significantly. Relying on the human metabolic network assembled from Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we mapped these differential metabolites to the network and constructed an NSCLC-related disease module containing 23 putative metabolic markers. By measuring the PageRank centrality of molecules in this module, we computationally evaluated the network-based importance of the 23 metabolites and demonstrated that the metabolism pathways of aromatic amino acids and long-chain fatty acids provided potential molecular targets of NSCLC (i.e., IL4l1 and ACOT2). Combining network-based ranking and support-vector machine modeling, we further found a panel of eight metabolites (i.e., pyruvate, tryptophan, and palmitic acid) that showed a high capability to differentiate patients from controls (accuracy > 97.7%). In summary, we present a meaningful network method for metabolic marker discovery and have identified eight strong candidate metabolites for NSCLC diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
gaga完成签到,获得积分10
3秒前
3秒前
你好完成签到 ,获得积分0
3秒前
田様应助songjing采纳,获得10
4秒前
song完成签到,获得积分20
4秒前
研友_VZG7GZ应助wyfre采纳,获得10
4秒前
5秒前
xiangwang发布了新的文献求助30
5秒前
mashibeo完成签到,获得积分0
7秒前
7秒前
小小小珂卿完成签到,获得积分10
7秒前
8秒前
单薄自行车完成签到 ,获得积分10
8秒前
科研通AI6应助sssleep采纳,获得10
9秒前
迷途发布了新的文献求助10
10秒前
Bismarck发布了新的文献求助10
10秒前
10秒前
ding应助洁净的醉波采纳,获得10
10秒前
11秒前
光亮的天真完成签到,获得积分10
11秒前
于涉发布了新的文献求助10
12秒前
12秒前
SJP2025发布了新的文献求助10
13秒前
15秒前
结王三完成签到,获得积分10
15秒前
科目三应助要减肥惜雪采纳,获得10
16秒前
的墨完成签到,获得积分10
16秒前
FanWoo完成签到,获得积分10
18秒前
活力的采枫完成签到,获得积分10
18秒前
打打应助微笑傲白采纳,获得10
18秒前
19秒前
阔达晓博发布了新的文献求助10
20秒前
20秒前
一YI发布了新的文献求助10
21秒前
21秒前
Xiaoxiao应助xalone采纳,获得10
22秒前
Ava应助水蓝丨剑月采纳,获得30
23秒前
黄绪林完成签到,获得积分10
23秒前
大尾巴白完成签到,获得积分10
24秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5500984
求助须知:如何正确求助?哪些是违规求助? 4597393
关于积分的说明 14458827
捐赠科研通 4530714
什么是DOI,文献DOI怎么找? 2482919
邀请新用户注册赠送积分活动 1466601
关于科研通互助平台的介绍 1439291