重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Metabolic network-based identification of plasma markers for non-small cell lung cancer

代谢网络 小桶 代谢组学 计算生物学 代谢途径 生物 生物信息学 生物化学 基因 转录组 基因表达
作者
Linling Guo,Linrui Li,Zhiyun Xu,Fanchen Meng,Huimin Guo,Peijia Liu,Peifang Liu,Yuan Tian,Fengguo Xu,Zunjian Zhang,Shuai Zhang,Yin Huang
出处
期刊:Analytical and Bioanalytical Chemistry [Springer Nature]
卷期号:413 (30): 7421-7430 被引量:9
标识
DOI:10.1007/s00216-021-03699-5
摘要

Metabolic markers, offering sensitive information on biological dysfunction, play important roles in diagnosing and treating cancers. However, the discovery of effective markers is limited by the lack of well-established metabolite selection approaches. Here, we propose a network-based strategy to uncover the metabolic markers with potential clinical availability for non-small cell lung cancer (NSCLC). First, an integrated mass spectrometry-based untargeted metabolomics was used to profile the plasma samples from 43 NSCLC patients and 43 healthy controls. We found that a series of 39 metabolites were altered significantly. Relying on the human metabolic network assembled from Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we mapped these differential metabolites to the network and constructed an NSCLC-related disease module containing 23 putative metabolic markers. By measuring the PageRank centrality of molecules in this module, we computationally evaluated the network-based importance of the 23 metabolites and demonstrated that the metabolism pathways of aromatic amino acids and long-chain fatty acids provided potential molecular targets of NSCLC (i.e., IL4l1 and ACOT2). Combining network-based ranking and support-vector machine modeling, we further found a panel of eight metabolites (i.e., pyruvate, tryptophan, and palmitic acid) that showed a high capability to differentiate patients from controls (accuracy > 97.7%). In summary, we present a meaningful network method for metabolic marker discovery and have identified eight strong candidate metabolites for NSCLC diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jiaqi完成签到,获得积分20
1秒前
小蘑菇应助研友_ZlxK6Z采纳,获得10
1秒前
1秒前
yyy发布了新的文献求助10
2秒前
充电宝应助啊TiP采纳,获得10
2秒前
lbwnb2112完成签到,获得积分10
3秒前
4秒前
xiaowang完成签到,获得积分10
4秒前
秀秀粉完成签到,获得积分10
4秒前
4秒前
大方小松发布了新的文献求助10
4秒前
4秒前
晨芒发布了新的文献求助10
4秒前
5秒前
星辰大海应助merry2025采纳,获得10
5秒前
丘比特应助包宇采纳,获得10
5秒前
贤惠的小夏完成签到,获得积分10
5秒前
wangq完成签到,获得积分10
6秒前
林登万发布了新的文献求助10
6秒前
7秒前
科研的打工狗完成签到,获得积分10
7秒前
8秒前
长情篮球发布了新的文献求助10
8秒前
8秒前
852应助ljq采纳,获得10
9秒前
仰光发布了新的文献求助10
9秒前
1234完成签到 ,获得积分10
9秒前
领导范儿应助玲℃采纳,获得10
10秒前
赘婿应助luckyhan采纳,获得10
10秒前
10秒前
10秒前
无情的安蕾完成签到,获得积分10
10秒前
Garrette发布了新的文献求助10
11秒前
乐乐应助我是聪聪呦采纳,获得10
11秒前
12秒前
安静的寒蕾完成签到,获得积分10
12秒前
马伊发布了新的文献求助10
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567