Metabolic network-based identification of plasma markers for non-small cell lung cancer

代谢网络 小桶 代谢组学 计算生物学 代谢途径 生物 生物信息学 生物化学 基因 转录组 基因表达
作者
Linling Guo,Linrui Li,Zhiyun Xu,Fanchen Meng,Huimin Guo,Peijia Liu,Peifang Liu,Yuan Tian,Fengguo Xu,Zunjian Zhang,Shuai Zhang,Yin Huang
出处
期刊:Analytical and Bioanalytical Chemistry [Springer Nature]
卷期号:413 (30): 7421-7430 被引量:9
标识
DOI:10.1007/s00216-021-03699-5
摘要

Metabolic markers, offering sensitive information on biological dysfunction, play important roles in diagnosing and treating cancers. However, the discovery of effective markers is limited by the lack of well-established metabolite selection approaches. Here, we propose a network-based strategy to uncover the metabolic markers with potential clinical availability for non-small cell lung cancer (NSCLC). First, an integrated mass spectrometry-based untargeted metabolomics was used to profile the plasma samples from 43 NSCLC patients and 43 healthy controls. We found that a series of 39 metabolites were altered significantly. Relying on the human metabolic network assembled from Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we mapped these differential metabolites to the network and constructed an NSCLC-related disease module containing 23 putative metabolic markers. By measuring the PageRank centrality of molecules in this module, we computationally evaluated the network-based importance of the 23 metabolites and demonstrated that the metabolism pathways of aromatic amino acids and long-chain fatty acids provided potential molecular targets of NSCLC (i.e., IL4l1 and ACOT2). Combining network-based ranking and support-vector machine modeling, we further found a panel of eight metabolites (i.e., pyruvate, tryptophan, and palmitic acid) that showed a high capability to differentiate patients from controls (accuracy > 97.7%). In summary, we present a meaningful network method for metabolic marker discovery and have identified eight strong candidate metabolites for NSCLC diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
细心飞鸟完成签到 ,获得积分10
4秒前
丘比特应助飘逸小笼包采纳,获得30
5秒前
5秒前
6秒前
7秒前
vivienwant发布了新的文献求助10
7秒前
7秒前
辛勤夜柳发布了新的文献求助10
8秒前
felix发布了新的文献求助10
10秒前
月初完成签到 ,获得积分10
10秒前
很酷的妞子完成签到 ,获得积分10
11秒前
良辰完成签到,获得积分10
12秒前
儒雅老太发布了新的文献求助10
12秒前
kenna123发布了新的文献求助80
12秒前
丁茸茸完成签到,获得积分10
13秒前
13秒前
无花果应助felix采纳,获得10
15秒前
能干砖家完成签到,获得积分10
15秒前
nil发布了新的文献求助10
19秒前
珍惜完成签到,获得积分10
19秒前
oceanao应助nn采纳,获得10
20秒前
科研通AI2S应助xu采纳,获得10
21秒前
abjz完成签到,获得积分10
22秒前
旋转木马9个完成签到 ,获得积分10
23秒前
酷波er应助kenna123采纳,获得80
24秒前
昊昊完成签到,获得积分10
24秒前
27秒前
27秒前
28秒前
马婷婷完成签到,获得积分20
30秒前
橙子完成签到 ,获得积分10
31秒前
米布发布了新的文献求助10
32秒前
33秒前
h41692011发布了新的文献求助10
33秒前
Louie~发布了新的文献求助10
33秒前
shuitian998完成签到,获得积分10
34秒前
乐之完成签到 ,获得积分10
34秒前
清风明月完成签到,获得积分10
35秒前
大熊发布了新的文献求助10
36秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164126
求助须知:如何正确求助?哪些是违规求助? 2814837
关于积分的说明 7906792
捐赠科研通 2474446
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631818
版权声明 602228