小波包分解
模式识别(心理学)
人工智能
计算机科学
运动表象
线性判别分析
特征向量
小波变换
小波
离散小波变换
平稳小波变换
特征提取
解码方法
网络数据包
分类器(UML)
语音识别
脑-机接口
脑电图
算法
精神科
计算机网络
心理学
作者
Xueting Wang,Zhao Hong-xia,Guojing Li,Lili He,SU Xiao-guang,Yuchun Wang,Bin Xu,Chunjuan Li,Yifeng Wei
标识
DOI:10.23919/ccc52363.2021.9549999
摘要
In this paper, wavelet packet transform (WPT) and common space pattern (CSP) algorithm are used to extract signal features. Firstly, the wavelet packet transform is used to decompose the signal, and the appropriate wavelet packet subband is selected for reconstruction. Then, feature vectors are extracted by common space pattern projection mapping. Finally, it innovatively combines linear discriminant classifier (LDA) to classify. The results on BCI-Competition-IV-2b data set show that the average classification accuracy is 86.29%.
科研通智能强力驱动
Strongly Powered by AbleSci AI