Complex Decay Prediction of Marine Machinery Using Multilabel SVM

推进 支持向量机 可靠性(半导体) 过程(计算) 模式(计算机接口) 人工智能 断层(地质) 计算机科学 控制理论(社会学) 算法 模拟 工程类 物理 航空航天工程 地质学 控制(管理) 功率(物理) 地震学 操作系统 量子力学
作者
Yanghui Tan,Hui Tian,Feixiang Xu,Dingyu Jiang,Ruizheng Jiang,Yejin Lin,Jundong Zhang
出处
期刊:Journal of Ship Research [The Society of Naval Architects and Marine Engineers]
卷期号:66 (02): 172-181 被引量:2
标识
DOI:10.5957/josr.10200052
摘要

Abstract In this article, a multilabel support vector machine (SVM)-based approach is investigated to address the simultaneous decay detection of the marine propulsion system. To verify the performance of the algorithm, we perform some experiments using a simulation dataset from a real-data validated numerical simulator of a Frigate. In particular, we try to train the model without simultaneous decay data, considering the great difficulty of obtaining simultaneous decay data in practice. The experimental results show that the proposed approach can identify the complex decay modes of the marine propulsion system effectively using only simple decay data in the training process. Introduction The propulsion system is considered to be the “heart” of a marine ship (Li et al. 2019a). Its safety and reliability are critical to the regular operation of the ship (Bayer et al. 2018; Cheliotis & Lazakis, 2018; Lazakis et al. 2016). However, performance decay may occur to the propulsion system due to the high humidity and high salt characteristics of the marine environment (Fang et al. 2018; Kang et al. 2019; Wang et al. 2019). The decay modes can be divided into single decay and simultaneous decay. Single decay indicates a simple decay mode that only one kind of decay occurs at a time, and simultaneous decay indicates a complex decay mode that multiple decays occur at the same time. To improve the safety and reliability of the marine propulsion system, researchers have proposed many related approaches from the perspective of fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
123456发布了新的文献求助10
2秒前
Rena发布了新的文献求助10
3秒前
颜倾关注了科研通微信公众号
3秒前
Rita发布了新的文献求助10
3秒前
Chem发布了新的文献求助10
3秒前
满意的柜子完成签到,获得积分10
3秒前
MEMSforever发布了新的文献求助50
4秒前
Tessa完成签到,获得积分10
5秒前
VDC应助紧张的惜寒采纳,获得30
6秒前
张张完成签到,获得积分20
7秒前
ouiiiblue完成签到,获得积分10
7秒前
聪慧的栾完成签到,获得积分10
7秒前
酷炫大白完成签到,获得积分10
8秒前
科研通AI5应助LHL采纳,获得10
8秒前
9秒前
正直自行车完成签到,获得积分10
9秒前
Akim应助zyy采纳,获得10
9秒前
10秒前
张秋实发布了新的文献求助10
10秒前
10秒前
11秒前
深情安青应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
斯文败类应助wax采纳,获得30
12秒前
13秒前
ziming313发布了新的文献求助10
14秒前
JamesPei应助aoxiangcaizi12采纳,获得10
14秒前
xinyue发布了新的文献求助10
14秒前
一星如月完成签到,获得积分10
15秒前
15秒前
hersy完成签到,获得积分10
16秒前
副总完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542861
求助须知:如何正确求助?哪些是违规求助? 3120134
关于积分的说明 9341680
捐赠科研通 2818200
什么是DOI,文献DOI怎么找? 1549414
邀请新用户注册赠送积分活动 722131
科研通“疑难数据库(出版商)”最低求助积分说明 712978