A risk prediction model of post-stroke cognitive impairment based on magnetic resonance spectroscopy imaging

接收机工作特性 医学 列线图 冲程(发动机) 磁共振成像 内科学 放射科 机械工程 工程类
作者
Xueling Yuan,Lei Zhang,Rubo Sui,Zhuo Wang
出处
期刊:Neurological Research [Informa]
卷期号:43 (8): 642-652 被引量:10
标识
DOI:10.1080/01616412.2021.1908659
摘要

Objective: To explore the clinical value of a risk prediction model of post-stroke cognitive impairment (PSCI) based on proton magnetic resonance spectroscopy (1H-MRS).Methods:A retrospective analysis was conducted on 376 stroke patients hospitalized between March 2016 and March 2019. Their relevant clinical baseline data were collected at admission. After the patients' condition was stabilized, 1H-MRS was performed to detect the related indices of the bilateral prefrontal lobe, thalamus, basal ganglia, hippocampus, precuneus, and angular gyrus. Within 12 months of the onset of stroke, cognitive impairment tests were performed monthly. Based on score results, stroke patients were divided into two groups: PSCI and post-stroke non-PSCI (N-PSCI). Thirty-four characteristic parameters of baseline and imaging data were extracted from the PSCI and N-PSCI groups. The least absolute shrinkage and selection operator (LASSO) regression was used for optimal feature selection, and a nomogram prediction model was established. The predictive ability of the model was validated by a calibration plot and the area under the curve (AUC) of the receiver operating characteristic curve.Results: Six risk factors were identified from clinical baseline data and MRS indices based on screening by LASSO dimensionality reduction. The consistency test of the correction curve showed that the prediction probability of the PSCI nomogram had good correlation with actual diagnosis. The AUCs of internal and external validation were 0.8935 and 0.8523, respectively.Discussion: A PSCI risk prediction model based on MRS serves to assist clinicians in estimating the risk of cognitive impairment after stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英姑应助qi采纳,获得10
刚刚
Lny应助niko采纳,获得10
刚刚
1秒前
mmol发布了新的文献求助10
1秒前
yusheng发布了新的文献求助10
1秒前
熊啾啾发布了新的文献求助10
1秒前
坦率的匪发布了新的文献求助30
1秒前
Orange应助Amira采纳,获得10
2秒前
sanmumu完成签到,获得积分10
2秒前
纯真心情发布了新的文献求助10
2秒前
十一发布了新的文献求助10
2秒前
3秒前
研友_VZG7GZ应助泽丶采纳,获得10
3秒前
mwx应助SMU_mr_student采纳,获得10
3秒前
Mic应助明理的凌兰采纳,获得10
4秒前
今后应助李联洪采纳,获得10
4秒前
4秒前
billows发布了新的文献求助10
4秒前
5秒前
思源应助晓明拥抱世界采纳,获得10
5秒前
潇涯应助听闻墨笙采纳,获得20
5秒前
5秒前
科目三应助动听白秋采纳,获得10
6秒前
6秒前
天天快乐应助Xiangyang采纳,获得10
6秒前
念心发布了新的文献求助20
6秒前
星辰大海应助孤独的问凝采纳,获得10
7秒前
7秒前
玩命的囧发布了新的文献求助10
7秒前
阿凡达发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
水下月发布了新的文献求助10
8秒前
9秒前
Surry完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
DAdump1ing完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531486
求助须知:如何正确求助?哪些是违规求助? 4620295
关于积分的说明 14572638
捐赠科研通 4559928
什么是DOI,文献DOI怎么找? 2498650
邀请新用户注册赠送积分活动 1478588
关于科研通互助平台的介绍 1449980